Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.351 IF 4.351
  • IF 5-year value: 5.124 IF 5-year
    5.124
  • CiteScore value: 4.44 CiteScore
    4.44
  • SNIP value: 1.250 SNIP 1.250
  • IPP value: 4.10 IPP 4.10
  • SJR value: 2.203 SJR 2.203
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 29 Scimago H
    index 29
  • h5-index value: 31 h5-index 31
Volume 9, issue 3
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Dynam., 9, 969–983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.

Related authors

The middle-to-late Eocene greenhouse climate, modelled using the CESM 1.0.5
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2020-29,https://doi.org/10.5194/cp-2020-29, 2020
Preprint under review for CP
Short summary
The impact of upwelling on the intensification of anticyclonic ocean eddies in the Caribbean Sea
Carine G. van der Boog, Julie D. Pietrzak, Henk A. Dijkstra, Nils Brüggemann, René M. van Westen, Rebecca K. James, Tjeerd J. Bouma, Riccardo E. M. Riva, D. Cornelis Slobbe, Roland Klees, Marcel Zijlema, and Caroline A. Katsman
Ocean Sci., 15, 1419–1437, https://doi.org/10.5194/os-15-1419-2019,https://doi.org/10.5194/os-15-1419-2019, 2019
Short summary
Numerical bifurcation methods applied to climate models: analysis beyond simulation
Henk A. Dijkstra
Nonlin. Processes Geophys., 26, 359–369, https://doi.org/10.5194/npg-26-359-2019,https://doi.org/10.5194/npg-26-359-2019, 2019
Short summary
Phase Synchronisation in the Kuroshio Current System
Ann Kristin Klose, René M. van Westen, and Henk A. Dijkstra
Ocean Sci. Discuss., https://doi.org/10.5194/os-2019-96,https://doi.org/10.5194/os-2019-96, 2019
Revised manuscript accepted for OS
Seasonal and regional variations of sinking in the subpolar North Atlantic from a high-resolution ocean model
Juan-Manuel Sayol, Henk Dijkstra, and Caroline Katsman
Ocean Sci., 15, 1033–1053, https://doi.org/10.5194/os-15-1033-2019,https://doi.org/10.5194/os-15-1033-2019, 2019
Short summary

Related subject area

Dynamics of the Earth system: models
Emulating Earth system model temperatures with MESMER: from global mean temperature trajectories to grid-point-level realizations on land
Lea Beusch, Lukas Gudmundsson, and Sonia I. Seneviratne
Earth Syst. Dynam., 11, 139–159, https://doi.org/10.5194/esd-11-139-2020,https://doi.org/10.5194/esd-11-139-2020, 2020
Short summary
A global semi-empirical glacial isostatic adjustment (GIA) model based on Gravity Recovery and Climate Experiment (GRACE) data
Yu Sun and Riccardo E. M. Riva
Earth Syst. Dynam., 11, 129–137, https://doi.org/10.5194/esd-11-129-2020,https://doi.org/10.5194/esd-11-129-2020, 2020
Short summary
Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution
Mareike Schuster, Jens Grieger, Andy Richling, Thomas Schartner, Sebastian Illing, Christopher Kadow, Wolfgang A. Müller, Holger Pohlmann, Stephan Pfahl, and Uwe Ulbrich
Earth Syst. Dynam., 10, 901–917, https://doi.org/10.5194/esd-10-901-2019,https://doi.org/10.5194/esd-10-901-2019, 2019
Short summary
Societal breakdown as an emergent property of large-scale behavioural models of land use change
Calum Brown, Bumsuk Seo, and Mark Rounsevell
Earth Syst. Dynam., 10, 809–845, https://doi.org/10.5194/esd-10-809-2019,https://doi.org/10.5194/esd-10-809-2019, 2019
Short summary
Improving weather and climate predictions by training of supermodels
Francine Schevenhoven, Frank Selten, Alberto Carrassi, and Noel Keenlyside
Earth Syst. Dynam., 10, 789–807, https://doi.org/10.5194/esd-10-789-2019,https://doi.org/10.5194/esd-10-789-2019, 2019
Short summary

Cited articles

Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Publications Copernicus
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern...
Citation