Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 9, issue 3
Earth Syst. Dynam., 9, 969-983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Earth Syst. Dynam., 9, 969-983, 2018
https://doi.org/10.5194/esd-9-969-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 23 Jul 2018

Research article | 23 Jul 2018

Using network theory and machine learning to predict El Niño

Peter D. Nooteboom et al.
Related authors  
Cascading transitions in the climate system
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243-1260, https://doi.org/10.5194/esd-9-1243-2018,https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
The point of no return for climate action: effects of climate uncertainty and risk tolerance
Matthias Aengenheyster, Qing Yi Feng, Frederick van der Ploeg, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1085-1095, https://doi.org/10.5194/esd-9-1085-2018,https://doi.org/10.5194/esd-9-1085-2018, 2018
Short summary
A mathematical approach to understanding emergent constraints
Femke J. M. M. Nijsse and Henk A. Dijkstra
Earth Syst. Dynam., 9, 999-1012, https://doi.org/10.5194/esd-9-999-2018,https://doi.org/10.5194/esd-9-999-2018, 2018
Short summary
Equilibrium state and sensitivity of the simulated middle-to-late Eocene climate
Michiel Baatsen, Anna S. von der Heydt, Matthew Huber, Michael A. Kliphuis, Peter K. Bijl, Appy Sluijs, and Henk A. Dijkstra
Clim. Past Discuss., https://doi.org/10.5194/cp-2018-43,https://doi.org/10.5194/cp-2018-43, 2018
Revised manuscript has not been submitted
Short summary
Preface: Current perspectives in modelling, monitoring, and predicting geophysical fluid dynamics
Ana M. Mancho, Emilio Hernández-García, Cristóbal López, Antonio Turiel, Stephen Wiggins, and Vicente Pérez-Muñuzuri
Nonlin. Processes Geophys., 25, 125-127, https://doi.org/10.5194/npg-25-125-2018,https://doi.org/10.5194/npg-25-125-2018, 2018
Related subject area  
Dynamics of the Earth system: models
The effect of univariate bias adjustment on multivariate hazard estimates
Jakob Zscheischler, Erich M. Fischer, and Stefan Lange
Earth Syst. Dynam., 10, 31-43, https://doi.org/10.5194/esd-10-31-2019,https://doi.org/10.5194/esd-10-31-2019, 2019
Short summary
Light absorption by marine cyanobacteria affects tropical climate mean state and variability
Hanna Paulsen, Tatiana Ilyina, Johann H. Jungclaus, Katharina D. Six, and Irene Stemmler
Earth Syst. Dynam., 9, 1283-1300, https://doi.org/10.5194/esd-9-1283-2018,https://doi.org/10.5194/esd-9-1283-2018, 2018
Short summary
Sensitivity study of the regional climate model RegCM4 to different convective schemes over West Africa
Brahima Koné, Arona Diedhiou, N'datchoh Evelyne Touré, Mouhamadou Bamba Sylla, Filippo Giorgi, Sandrine Anquetin, Adama Bamba, Adama Diawara, and Arsene Toka Kobea
Earth Syst. Dynam., 9, 1261-1278, https://doi.org/10.5194/esd-9-1261-2018,https://doi.org/10.5194/esd-9-1261-2018, 2018
Short summary
Simulation of observed climate changes in 1850–2014 with climate model INM-CM5
Evgeny Volodin and Andrey Gritsun
Earth Syst. Dynam., 9, 1235-1242, https://doi.org/10.5194/esd-9-1235-2018,https://doi.org/10.5194/esd-9-1235-2018, 2018
Short summary
A theoretical approach to assess soil moisture–climate coupling across CMIP5 and GLACE-CMIP5 experiments
Clemens Schwingshackl, Martin Hirschi, and Sonia I. Seneviratne
Earth Syst. Dynam., 9, 1217-1234, https://doi.org/10.5194/esd-9-1217-2018,https://doi.org/10.5194/esd-9-1217-2018, 2018
Short summary
Cited articles  
Akaike, H.: A New Look at the Statistical Model Identification, IEEE T. Automat. Contr., AC-19, 716–723, https://doi.org/10.1109/TAC.1974.1100705, 1974.
Aladag, C. H., Egrioglu, E., and Kadilar, C.: Forecasting nonlinear time series with a hybrid methodology, Appl. Math. Lett., 22, 1467–1470, https://doi.org/10.1016/j.aml.2009.02.006, 2009.
Al-Smadi, A. and Al-Zaben, A.: ARMA Model Order Determination Using Edge Detection: A New Perspective, Circuits, Systems Signal Processing, 24, 723–732, 2005.
Berezin, Y., Gozolchiani, A., Guez, O., and Havlin, S.: Stability of Climate Networks with Time, Sci. Rep.-UK, 2, 1–8, https://doi.org/10.1038/srep00666, 2012.
Bergmeir, C. and Benítez, J. M.: On the use of cross-validation for time series predictor evaluation, Inf. Sci. (Ny)., 191, 192–213, https://doi.org/10.1016/j.ins.2011.12.028, 2012.
Publications Copernicus
Download
Short summary
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern Pacific, fascinates people for a long time. El Niño is associated with natural disasters, such as droughts and floods. Current methods can make a reliable prediction of this phenomenon up to 6 months ahead. However, this article presents a method which combines network theory and machine learning which predicts El Niño up to 1 year ahead.
The prediction of the El Niño phenomenon, an increased sea surface temperature in the eastern...
Citation
Share