Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 9, issue 3 | Copyright

Special issue: Hydro-climate dynamics, analytics and predictability

Earth Syst. Dynam., 9, 955-968, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 09 Jul 2018

Research article | 09 Jul 2018

How intermittency affects the rate at which rainfall extremes respond to changes in temperature

Marc Schleiss Marc Schleiss
  • Department of Geoscience & Remote Sensing, Delft University of Technology, Delft, the Netherlands

Abstract. A detailed analysis of how intermittency (i.e., the alternation of dry and rainy periods) modulates the rate at which sub-daily rainfall extremes depend on temperature is presented. Results show that hourly extremes tend to be predominantly controlled by peak intensity, increasing at a rate of approximately 7% per degree in agreement with the Clausius–Clapeyron equation. However, a rapid increase in intermittency upward of 20–25°C is shown to produce local deviations from this theoretical scaling, resulting in lower scaling rates. On the other hand, rapidly decreasing intermittency with temperature between 10 and 20° can result in higher net scaling rates than expected, potentially exceeding Clausius–Clapeyron. In general, the importance of intermittency in controlling the scaling rates of precipitation with temperature grows as we progress from hourly to daily aggregation timescales and beyond. Thermodynamic effects still play an important role in controlling the maximum water-holding capacity of the atmosphere and therefore peak rainfall intensity, but the observational evidence shows that, beyond a few hours, storm totals become increasingly dominated by dynamical factors. The conclusion is that Clausius–Clapeyron scaling alone cannot be used to reliably predict the net effective changes in rainfall extremes with temperature beyond a few hours. A more general scaling model that takes into account simultaneous changes in intermittency and peak intensity with temperature is proposed to help better disentangle these two phenomena (e.g., peak intensity and intermittency). The new model is applied to a large number of high-resolution rain gauge time series in the United States, and results show that it greatly improves the representation of rainfall extremes with temperature, producing a much more consistent and reliable picture of extremes across scales than using Clausius–Clapeyron only.

Download & links
Publications Copernicus
Special issue
Short summary
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy periods) affects the rate at which precipitation extremes increase with temperature. Using high-resolution rainfall data from 99 stations in the United States, we show that at scales beyond a few hours, intermittency causes rainfall extremes to deviate substantially from Clausius–Clapeyron. A new model is proposed to better represent and predict these changes across scales.
The present study aims at explaining how intermittency (i.e., the alternation of dry and rainy...