Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.351 IF 4.351
  • IF 5-year value: 5.124 IF 5-year
    5.124
  • CiteScore value: 4.44 CiteScore
    4.44
  • SNIP value: 1.250 SNIP 1.250
  • IPP value: 4.10 IPP 4.10
  • SJR value: 2.203 SJR 2.203
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 29 Scimago H
    index 29
  • h5-index value: 31 h5-index 31
ESD | Articles | Volume 9, issue 2
Earth Syst. Dynam., 9, 817–828, 2018
https://doi.org/10.5194/esd-9-817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: The Earth system at a global warming of 1.5°C and 2.0°C

Earth Syst. Dynam., 9, 817–828, 2018
https://doi.org/10.5194/esd-9-817-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 13 Jun 2018

Research article | 13 Jun 2018

Climate, ocean circulation, and sea level changes under stabilization and overshoot pathways to 1.5 K warming

Jaime B. Palter et al.

Related authors

Is deoxygenation detectable before warming in the thermocline?
Angélique Hameau, Thomas L. Frölicher, Juliette Mignot, and Fortunat Joos
Biogeosciences, 17, 1877–1895, https://doi.org/10.5194/bg-17-1877-2020,https://doi.org/10.5194/bg-17-1877-2020, 2020
Short summary
Twenty-first century ocean warming, acidification, deoxygenation, and upper ocean nutrient decline from CMIP6 model projections
Lester Kwiatkowski, Olivier Torres, Laurent Bopp, Olivier Aumont, Matthew Chamberlain, James Christian, John P. Dunne, Marion Gehlen, Tatiana Ilyina, Jasmin G. John, Andrew Lenton, Hongmei Li, Nicole S. Lovenduski, James C. Orr, Julien Palmieri, Jörg Schwinger, Roland Séférian, Charles A. Stock, Alessandro Tagliabue, Yohei Takano, Jerry Tjiputra, Katsuya Toyama, Hiroyuki Tsujino, Michio Watanabe, Akitomo Yamamoto, Andrew Yool, and Tilo Ziehn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-16,https://doi.org/10.5194/bg-2020-16, 2020
Preprint under review for BG
Short summary
Increase in ocean acidity variability and extremes under increasing atmospheric CO2
Friedrich A. Burger, Thomas L. Frölicher, and Jasmin G. John
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-22,https://doi.org/10.5194/bg-2020-22, 2020
Revised manuscript under review for BG
Short summary
Is there warming in the pipeline? A multi-model analysis of the zero emission commitment from CO2
Andrew H. MacDougall, Thomas L. Frölicher, Chris D. Jones, Joeri Rogelj, H. Damon Matthews, Kirsten Zickfeld, Vivek K. Arora, Noah J. Barrett, Victor Brovkin, Friedrich A. Burger, Micheal Eby, Alexey V. Eliseev, Tomohiro Hajima, Philip B. Holden, Aurich Jeltsch-Thömmes, Charles Koven, Laurie Menviel, Martine Michou, Igor I. Mokhov, Akira Oka, Jörg Schwinger, Roland Séférian, Gary Shaffer, Andrei Sokolov, Kaoru Tachiiri, Jerry Tjiputra, Andrew Wiltshire, and Tilo Ziehn
Biogeosciences Discuss., https://doi.org/10.5194/bg-2019-492,https://doi.org/10.5194/bg-2019-492, 2020
Revised manuscript accepted for BG
Short summary
Effective radiative forcing and adjustments in CMIP6 models
Christopher J. Smith, Ryan J. Kramer, Gunnar Myhre, Kari Alterskjær, William Collins, Adriana Sima, Olivier Boucher, Jean-Louis Dufresne, Pierre Nabat, Martine Michou, Seiji Yukimoto, Jason Cole, David Paynter, Hideo Shiogama, Fiona M. O'Connor, Eddy Robertson, Andy Wiltshire, Timothy Andrews, Cécile Hannay, Ron Miller, Larissa Nazarenko, Alf Kirkevåg, Dirk Olivié, Stephanie Fiedler, Robert Pincus, and Piers M. Forster
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2019-1212,https://doi.org/10.5194/acp-2019-1212, 2020
Revised manuscript under review for ACP
Short summary

Related subject area

Earth system change: climate scenarios
Differing precipitation response between solar radiation management and carbon dioxide removal due to fast and slow components
Anton Laakso, Peter K. Snyder, Stefan Liess, Antti-Ilari Partanen, and Dylan B. Millet
Earth Syst. Dynam., 11, 415–434, https://doi.org/10.5194/esd-11-415-2020,https://doi.org/10.5194/esd-11-415-2020, 2020
Short summary
Changes in the future summer Mediterranean climate: contribution of teleconnections and local factors
Monika J. Barcikowska, Sarah B. Kapnick, Lakshmi Krishnamurty, Simone Russo, Annalisa Cherchi, and Chris K. Folland
Earth Syst. Dynam., 11, 161–181, https://doi.org/10.5194/esd-11-161-2020,https://doi.org/10.5194/esd-11-161-2020, 2020
Projecting Antarctica's contribution to future sea level rise from basal ice shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Reinhard Calov, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William H. Lipscomb, Malte Meinshausen, Esmond Ng, Sophie M. J. Nowicki, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam., 11, 35–76, https://doi.org/10.5194/esd-11-35-2020,https://doi.org/10.5194/esd-11-35-2020, 2020
Short summary
Partitioning climate projection uncertainty with multiple Large Ensembles and CMIP5/6
Flavio Lehner, Clara Deser, Nicola Maher, Jochem Marotzke, Erich Fischer, Lukas Brunner, Reto Knutti, and Ed Hawkins
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-93,https://doi.org/10.5194/esd-2019-93, 2020
Revised manuscript accepted for ESD
Short summary
Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts
Sabrina Hempel, Christoph Menz, Severino Pinto, Elena Galán, David Janke, Fernando Estellés, Theresa Müschner-Siemens, Xiaoshuai Wang, Julia Heinicke, Guoqiang Zhang, Barbara Amon, Agustín del Prado, and Thomas Amon
Earth Syst. Dynam., 10, 859–884, https://doi.org/10.5194/esd-10-859-2019,https://doi.org/10.5194/esd-10-859-2019, 2019
Short summary

Cited articles

Anderson, J. L., Balaji. V., Broccoli, A. J., Cooke, W. F., Delworth, T. L., Dixon, K. W., Donner, L. J., Dunne, K. A., Freidenreich, S. M., Garner, S. T., Gudgel, R. G., Gordon, C. T., Held, I. M., Hemler, R. S., Horowitz, L. W., Klein, S. A., Knutson, T. R., Kushner, P. J., Langenhost, A. R., Cheung, L. N., Liang, Z., Malyshev, S. L., Milly, P. C. D., Nath, M. J., Ploshay, J. J., Ramaswamy, V., Schwarzkopf, M. D., Shevliakova, E., Sirutis, J. J., Soden, B. J., Stern, W. F., Thompson, L. A., Wilson, R. J., Wittenberg, A. T., and Wyman, B. L.: The New GFDL Global Atmosphere and Land Model AM2-LM2: Evaluation with Prescribed SST Simulations, J. Climate, 17, 4641–4673, https://doi.org/10.1175/JCLI-3223.1, 2004. a
Boucher, O., Halloran, P. R., Burke, E. J., Doutriaux-Boucher, M., Jones, C. D., Lowe, J., Ringer, M. A., Robertson, E., and Wu, P.: Reversibility in an Earth System model in response to CO2 concentration changes, Environ. Res. Lett., 7, 024013, https://doi.org/10.1088/1748-9326/7/2/024013, 2012. a
Cheng, W., Chiang, J. C. H., and Zhang, D.: Atlantic Meridional Overturning Circulation (AMOC) in CMIP5 models: RCP and Historical Simulations, J. Climate, 26, 7187–7197, https://doi.org/10.1175/jcli-d-12-00496.1, 2013. a, b
Cunningham, S. A., Kanzow, T., Rayner, D., Baringer, M. O., Johns, W. E., Marotzke, J., Longworth, H. R., Grant, E. M., Hirschi, J. J.-M., Beal, L. M., Meinen, C. S., and Bryden, H. L.: Temporal variability of the Atlantic meridional overturning circulation at 26.5 N, Science, 317, 935–938, https://doi.org/10.1126/science.1141304, 2007. a
Drijfhout, S., van Oldenborgh, G. J., and Cimatoribus, A.: Is a Decline of AMOC Causing the Warming Hole above the North Atlantic in Observed and Modeled Warming Patterns?, J. Climate, 25, 8373–8379, https://doi.org/10.1175/JCLI-D-12-00490.1, 2012. a
Publications Copernicus
Download
Short summary
Limiting global warming to 1.5 °C may require carbon removal from the atmosphere. We explore how the climate system differs when we achieve the 1.5 °C limit by rapid emissions reductions versus when we overshoot this limit, hitting 2 °C at mid-century before removing CO2 from the atmosphere. We show that sea level, ocean acidification, regional warming, and ocean circulation are very different under the overshoot pathway at 2100, despite hitting the 1.5 °C target for surface warming.
Limiting global warming to 1.5 °C may require carbon removal from the atmosphere. We explore how...
Citation