Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Earth Syst. Dynam., 9, 785-795, 2018
https://doi.org/10.5194/esd-9-785-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
08 Jun 2018
Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events
Vicente Pérez-Muñuzuri, Jorge Eiras-Barca, and Daniel Garaboa-Paz Group of Nonlinear Physics, Faculty of Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
Abstract. Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. In these methods, a moisture volume is assigned to each particle, which is then advected by the wind flow. Usual Lagrangian methods consider this volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial moisture volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. In this case, the tracer volume drag must be taken into account. Equations have been implemented and moisture convection was taken into account for both Lagrangian and inertial models. We apply these methods to evaluate the intense atmospheric rivers that devastated (i) the Pacific Northwest region of the US and (ii) the western Iberian Peninsula with flooding rains and intense winds in early November 2006 and 20 May 1994, respectively. We note that the usual Lagrangian method underestimates moisture availability in the continent, while active tracers achieve more realistic results.
Citation: Pérez-Muñuzuri, V., Eiras-Barca, J., and Garaboa-Paz, D.: Tagging moisture sources with Lagrangian and inertial tracers: application to intense atmospheric river events, Earth Syst. Dynam., 9, 785-795, https://doi.org/10.5194/esd-9-785-2018, 2018.
Publications Copernicus
Download
Short summary
Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and pathways. Usual Lagrangian methods consider the initial moisture volume to remain constant and the particle to follow flow path lines exactly. In a different approach, the initial volume can be considered to depend on time as it is advected by the flow due to thermodynamic processes. Drag and buoyancy forces must then be considered.
Two Lagrangian tracer tools are evaluated for studies on atmospheric moisture sources and...
Share