Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 9, issue 2 | Copyright

Special issue: The Earth system at a global warming of 1.5°C and 2.0°C

Earth Syst. Dynam., 9, 717-738, 2018
https://doi.org/10.5194/esd-9-717-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 07 Jun 2018

Research article | 07 Jun 2018

Spatial–temporal changes in runoff and terrestrial ecosystem water retention under 1.5 and 2 °C warming scenarios across China

Ran Zhai1,2, Fulu Tao1,2,3, and Zhihui Xu4 Ran Zhai et al.
  • 1Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
  • 2College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
  • 3Natural Resources Institute Finland (Luke), 00790 Helsinki, Finland
  • 4Information Center of Yellow River Conservancy Commission, Zhengzhou 450004, China

Abstract. The Paris Agreement set a long-term temperature goal of holding the global average temperature increase to below 2.0°C above pre-industrial levels, pursuing efforts to limit this to 1.5°C; it is therefore important to understand the impacts of climate change under 1.5 and 2.0°C warming scenarios for climate adaptation and mitigation. Here, climate scenarios from four global circulation models (GCMs) for the baseline (2006–2015), 1.5, and 2.0°C warming scenarios (2106–2115) were used to drive the validated Variable Infiltration Capacity (VIC) hydrological model to investigate the impacts of global warming on runoff and terrestrial ecosystem water retention (TEWR) across China at a spatial resolution of 0.5°. This study applied ensemble projections from multiple GCMs to provide more comprehensive and robust results. The trends in annual mean temperature, precipitation, runoff, and TEWR were analyzed at the grid and basin scale. Results showed that median change in runoff ranged from 3.61 to 13.86%, 4.20 to 17.89%, and median change in TEWR ranged from −0.45 to 6.71 and −3.48 to 4.40% in the 10 main basins in China under 1.5 and 2.0°C warming scenarios, respectively, across all four GCMs. The interannual variability of runoff increased notably in areas where it was projected to increase, and the interannual variability increased notably from the 1.5 to the 2.0°C warming scenario. In contrast, TEWR would remain relatively stable, the median change in standard deviation (SD) of TEWR ranged from −10 to 10% in about 90% grids under 1.5 and 2.0°C warming scenarios, across all four GCMs. Both low and high runoff would increase under the two warming scenarios in most areas across China, with high runoff increasing more. The risks of low and high runoff events would be higher under the 2.0 than under the 1.5°C warming scenario in terms of both extent and intensity. Runoff was significantly positively correlated to precipitation, while increase in maximum temperature would generally cause runoff to decrease through increasing evapotranspiration. Likewise, precipitation also played a dominant role in affecting TEWR. Our results were supported by previous studies. However, there existed large uncertainties in climate scenarios from different GCMs, which led to large uncertainties in impact assessment. The differences among the four GCMs were larger than differences between the two warming scenarios. Our findings on the spatiotemporal patterns of climate impacts and their shifts from the 1.5 to the 2.0°C warming scenario are useful for water resource management under different warming scenarios.

Download & links
Publications Copernicus
Special issue
Download
Short summary
This study investigated the changes in runoff and terrestrial ecosystem water retention (TEWR) across China under 1.5 and 2.0 °C warming scenarios by four bias-corrected GCMs using the VIC hydrological model. Results showed that TEWR remained relatively stable than runoff under warming scenarios and there were more water-related risks under the 2.0 °C than under the 1.5 °C warming scenario. Our findings are useful for water resource management under different warming scenarios.
This study investigated the changes in runoff and terrestrial ecosystem water retention (TEWR)...
Citation
Share