Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 9, issue 2 | Copyright

Special issue: The Earth system at a global warming of 1.5°C and 2.0°C

Earth Syst. Dynam., 9, 679-699, 2018
https://doi.org/10.5194/esd-9-679-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 05 Jun 2018

Research article | 05 Jun 2018

Euro-Atlantic winter storminess and precipitation extremes under 1.5 °C vs. 2 °C warming scenarios

Monika J. Barcikowska1, Scott J. Weaver2, Frauke Feser3, Simone Russo4, Frederik Schenk5, Dáithí A. Stone6,7, Michael F. Wehner6, and Matthias Zahn3 Monika J. Barcikowska et al.
  • 1Environmental Defense Fund, New York City, USA
  • 2Environmental Defense Fund, Washington, D.C., USA
  • 3Institute of Coastal Research, Helmholtz Centre Geesthacht, Geesthacht, Germany
  • 4European Commission, Joint Research Centre, Via Enrico Fermi, Ispra, Italy
  • 5Bolin Centre for Climate Research, Department of Geological Sciences, Stockholm University, Stockholm, Sweden
  • 6Lawrence Berkeley National Laboratory, Berkeley, CA, USA
  • 7Global Climate Adaptation Partnership, Oxford, UK

Abstract. Severe winter storms in combination with precipitation extremes pose a serious threat to Europe. Located at the southeastern exit of the North Atlantic's storm track, European coastlines are directly exposed to impacts by high wind speeds, storm floods and coastal erosion. In this study we analyze potential changes in simulated winter storminess and extreme precipitation, which may occur under 1.5 or 2°C warming scenarios. Here we focus on a first simulation suite of the atmospheric model CAM5 performed within the HAPPI project and evaluate how changes of the horizontal model resolution impact the results regarding atmospheric pressure, storm tracks, wind speed and precipitation extremes.

The comparison of CAM5 simulations with different resolutions indicates that an increased horizontal resolution to 0.25° not only refines regional-scale information but also improves large-scale atmospheric circulation features over the Euro-Atlantic region. The zonal bias in monthly pressure at mean sea level and wind fields, which is typically found in low-resolution models, is considerably reduced. This allows us to analyze potential changes in regional- to local-scale extreme wind speeds and precipitation in a more realistic way.

Our analysis of the future response for the 2°C warming scenario generally confirms previous model simulations suggesting a poleward shift and intensification of the meridional circulation in the Euro-Atlantic region. Additional analysis suggests that this shift occurs mainly after exceeding the 1.5°C global warming level, when the midlatitude jet stream manifests a strengthening northeastward. At the same time, this northeastern shift of the storm tracks allows an intensification and northeastern expansion of the Azores high, leading to a tendency of less precipitation across the Bay of Biscay and North Sea.

Regions impacted by the strengthening of the midlatitude jet, such as the northwestern coasts of the British Isles, Scandinavia and the Norwegian Sea, and over the North Atlantic east of Newfoundland, experience an increase in the mean as well as daily and sub-daily precipitation, wind extremes and storminess, suggesting an important influence of increasing storm activity in these regions in response to global warming.

Download & links
Publications Copernicus
Special issue
Download
Citation
Share