Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.635 IF 3.635
  • IF 5-year<br/> value: 3.869 IF 5-year
    3.869
  • CiteScore<br/> value: 4.15 CiteScore
    4.15
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 9, 647-661, 2018
https://doi.org/10.5194/esd-9-647-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
24 May 2018
Interannual variability in the gravity wave drag – vertical coupling and possible climate links
Petr Šácha1,2, Jiri Miksovsky1, and Petr Pisoft1 1Department of Atmospheric Physics, Faculty of Mathematics and Physics, Charles University, V Holesovickach 2, 180 00 Prague 8, Czech Republic
2Faculty of Sciences, Universidade de Vigo, Ourense, Spain
Abstract. Gravity wave drag (GWD) is an important driver of the middle atmospheric dynamics. However, there are almost no observational constraints on its strength and distribution (especially horizontal). In this study we analyze orographic GWD (OGWD) output from Canadian Middle Atmosphere Model simulation with specified dynamics (CMAM-sd) to illustrate the interannual variability in the OGWD distribution at particular pressure levels in the stratosphere and its relation to major climate oscillations. We have found significant changes in the OGWD distribution and strength depending on the phase of the North Atlantic Oscillation (NAO), quasi-biennial oscillation (QBO) and El Niño–Southern Oscillation. The OGWD variability is shown to be induced by lower-tropospheric wind variations to a large extent, and there is also significant variability detected in near-surface momentum fluxes. We argue that the orographic gravity waves (OGWs) and gravity waves (GWs) in general can be a quick mediator of the tropospheric variability into the stratosphere as the modifications of the OGWD distribution can result in different impacts on the stratospheric dynamics during different phases of the studied climate oscillations.
Citation: Šácha, P., Miksovsky, J., and Pisoft, P.: Interannual variability in the gravity wave drag – vertical coupling and possible climate links, Earth Syst. Dynam., 9, 647-661, https://doi.org/10.5194/esd-9-647-2018, 2018.
Publications Copernicus
Download
Short summary
The paper investigates variability in the gravity wave drag in the stratosphere in connection with climate phenomena like the El Niño–Southern Oscillation. This link represents a possible mechanism of tropospheric influence on the higher atmospheric layers, a mechanism of utmost importance that has not been studied in detail yet. The results illustrate that there are indeed significant changes in the gravity wave drag distribution and strength depending on the phase of the studied oscillations.
The paper investigates variability in the gravity wave drag in the stratosphere in connection...
Share