Supplement of

Impacts of climate change and climate extremes on major crops productivity in China at a global warming of 1.5 and 2.0 °C

Yi Chen et al.

Correspondence to: Fulu Tao (taofl@igsnrr.ac.cn)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.
Figure S1: Standard deviation of projected changes in mean temperature (a, b), precipitation (c, d), and solar radiation (e, f) during 2106-2115 under 1.5°C warming (a, c, e) and 2.0°C warming (b, d, f) scenarios relative to 2006-2015.
Figure S2. (a) Differences between Fig. 7a and Fig. 7c; (b) Differences between Fig. 7b and Fig. 7d; (c) Differences between Fig. 7e and Fig. 7g; (d) Differences between Fig. 7f and Fig. 7h.
Figure S3. Changes in variation coefficient of simulated yields between 1.5°C and 2.0°C warming scenarios for maize (a), wheat (b) and rice (c).
Figure S4. Standard deviation of changes in projected yield loss caused by heat stress for wheat (a, b, c, d) and maize (e, f, g, h) during 2106-2115 under 1.5°C warming (a, c, e, g) and 2.0°C warming scenarios (b, d, f, h) relative to 2006-2015, without (a, b, e, f) and with (c, d, g, h) CO₂ fertilization effect.
Figure S5. Standard deviation of changes in projected yield loss caused by drought stress for wheat (a, b, c, d) and maize (e, f, g, h) during 2106-2115 under 1.5°C warming (a, c, e, g) and 2.0°C warming scenarios (b, d, f, h) relative to 2006-2015, without(a, b, e, f) and with (c, d, g, h) CO₂ fertilization effect.