Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.635 IF 3.635
  • IF 5-year<br/> value: 3.869 IF 5-year
    3.869
  • CiteScore<br/> value: 4.15 CiteScore
    4.15
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 9, 227-240, 2018
https://doi.org/10.5194/esd-9-227-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
Research article
13 Mar 2018
Regional scaling of annual mean precipitation and water availability with global temperature change
Peter Greve1,2, Lukas Gudmundsson1, and Sonia I. Seneviratne1 1Institute of Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland
2International Institute for Applied Systems Analysis, Laxenburg, Austria
Abstract. Changes in regional water availability belong to the most crucial potential impacts of anthropogenic climate change, but are highly uncertain. It is thus of key importance for stakeholders to assess the possible implications of different global temperature thresholds on these quantities. Using a subset of climate model simulations from the fifth phase of the Coupled Model Intercomparison Project (CMIP5), we derive here the sensitivity of regional changes in precipitation and in precipitation minus evapotranspiration to global temperature changes. The simulations span the full range of available emission scenarios, and the sensitivities are derived using a modified pattern scaling approach. The applied approach assumes linear relationships on global temperature changes while thoroughly addressing associated uncertainties via resampling methods. This allows us to assess the full distribution of the simulations in a probabilistic sense. Northern high-latitude regions display robust responses towards wetting, while subtropical regions display a tendency towards drying but with a large range of responses. Even though both internal variability and the scenario choice play an important role in the overall spread of the simulations, the uncertainty stemming from the climate model choice usually accounts for about half of the total uncertainty in most regions. We additionally assess the implications of limiting global mean temperature warming to values below (i) 2 K or (ii) 1.5 K (as stated within the 2015 Paris Agreement). We show that opting for the 1.5 K target might just slightly influence the mean response, but could substantially reduce the risk of experiencing extreme changes in regional water availability.
Citation: Greve, P., Gudmundsson, L., and Seneviratne, S. I.: Regional scaling of annual mean precipitation and water availability with global temperature change, Earth Syst. Dynam., 9, 227-240, https://doi.org/10.5194/esd-9-227-2018, 2018.
Publications Copernicus
Download
Short summary
Assessing projected hydroclimatological changes is crucial, but associated with large uncertainties. We statistically assess here the response of precipitation and water availability to global temperature change, enabling us to estimate the significance of drying/wetting tendencies under anthropogenic climate change. We further show that opting for a 1.5 K warming target just slightly influences the mean response but could substantially reduce the risk of experiencing extreme changes.
Assessing projected hydroclimatological changes is crucial, but associated with large...
Share