Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 9, issue 1 | Copyright

Special issue: The 8th EGU Leonardo Conference: From evaporation to precipitation:...

Earth Syst. Dynam., 9, 167-185, 2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.

Research article 26 Feb 2018

Research article | 26 Feb 2018

A new moisture tagging capability in the Weather Research and Forecasting model: formulation, validation and application to the 2014 Great Lake-effect snowstorm

Damián Insua-Costa and Gonzalo Miguez-Macho Damián Insua-Costa and Gonzalo Miguez-Macho
  • Non-Linear Physics Group, Universidade de Santiago de Compostela, Galicia, Spain

Abstract. A new moisture tagging tool, usually known as water vapor tracer (WVT) method or online Eulerian method, has been implemented into the Weather Research and Forecasting (WRF) regional meteorological model, enabling it for precise studies on atmospheric moisture sources and pathways. We present here the method and its formulation, along with details of the implementation into WRF. We perform an in-depth validation with a 1-month long simulation over North America at 20km resolution, tagging all possible moisture sources: lateral boundaries, continental, maritime or lake surfaces and initial atmospheric conditions. We estimate errors as the moisture or precipitation amounts that cannot be traced back to any source. Validation results indicate that the method exhibits high precision, with errors considerably lower than 1% during the entire simulation period, for both precipitation and total precipitable water. We apply the method to the Great Lake-effect snowstorm of November 2014, aiming at quantifying the contribution of lake evaporation to the large snow accumulations observed in the event. We perform simulations in a nested domain at 5km resolution with the tagging technique, demonstrating that about 30–50% of precipitation in the regions immediately downwind, originated from evaporated moisture in the Great Lakes. This contribution increases to between 50 and 60% of the snow water equivalent in the most severely affected areas, which suggests that evaporative fluxes from the lakes have a fundamental role in producing the most extreme accumulations in these episodes, resulting in the highest socioeconomic impacts.

Publications Copernicus
Special issue
Short summary
We present here a newly implemented water vapor tracer tool into the WRF meteorological model (WRF-WVT). A detailed validation shows high accuracy, with an error of much less than 1 % in moisture traceability. As an example application, we show that for the 2014 Great Lake-effect snowstorm, above 30 % of precipitation in the regions immediately downwind originated from lake evaporation, with contributions exceeding 50 % in the areas with highest snowfall accumulations.
We present here a newly implemented water vapor tracer tool into the WRF meteorological model...