Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year
    4.522
  • CiteScore value: 4.14 CiteScore
    4.14
  • SNIP value: 1.170 SNIP 1.170
  • IPP value: 3.86 IPP 3.86
  • SJR value: 2.253 SJR 2.253
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 22 Scimago H
    index 22
  • h5-index value: 26 h5-index 26
Volume 8, issue 1
Earth Syst. Dynam., 8, 129-146, 2017
https://doi.org/10.5194/esd-8-129-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Dynam., 8, 129-146, 2017
https://doi.org/10.5194/esd-8-129-2017
© Author(s) 2017. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 22 Feb 2017

Research article | 22 Feb 2017

Changes in the seasonal cycle of the Atlantic meridional heat transport in a RCP 8.5 climate projection in MPI-ESM

Matthias Fischer1, Daniela I. V. Domeisen2,3, Wolfgang A. Müller4, and Johanna Baehr1 Matthias Fischer et al.
  • 1Institute of Oceanography, Center for Earth System Research and Sustainability, Universität Hamburg, Bundesstrasse 53, 20146 Hamburg, Germany
  • 2GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
  • 3University of Kiel, Kiel, Germany
  • 4Max Planck Institute for Meteorology, Hamburg, Germany

Abstract. We investigate changes in the seasonal cycle of the Atlantic Ocean meridional heat transport (OHT) in a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM) performed for the Coupled Model Intercomparison Project Phase 5 (CMIP5). Specifically, we compare a Representative Concentration Pathway (RCP) RCP 8.5 climate change scenario, covering the simulation period from 2005 to 2300, to a historical simulation, covering the simulation period from 1850 to 2005. In RCP 8.5, the OHT declines by 30–50% in comparison to the historical simulation in the North Atlantic by the end of the 23rd century. The decline in the OHT is accompanied by a change in the seasonal cycle of the total OHT and its components. We decompose the OHT into overturning and gyre component. For the OHT seasonal cycle, we find a northward shift of 5° and latitude-dependent shifts between 1 and 6 months that are mainly associated with changes in the meridional velocity field. We find that the changes in the OHT seasonal cycle predominantly result from changes in the wind-driven surface circulation, which projects onto the overturning component of the OHT in the tropical and subtropical North Atlantic. This leads in turn to latitude-dependent shifts between 1 and 6 months in the overturning component. In comparison to the historical simulation, in the subpolar North Atlantic, in RCP 8.5 we find a reduction of the North Atlantic Deep Water formation and changes in the gyre heat transport result in a strongly weakened seasonal cycle with a weakened amplitude by the end of the 23rd century.

Publications Copernicus
Download
Short summary
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM), we find that a decline in the Atlantic Ocean meridional heat transport (OHT) is accompanied by a change in the seasonal cycle of the total OHT and its components. We found a northward shift of 5° and latitude-dependent shifts between 1 and 6 months in the seasonal cycle that are mainly associated with changes in the meridional velocity field rather than the temperature field.
In a climate projection experiment with the Max Planck Institute Earth System Model (MPI-ESM),...
Citation
Share