Articles | Volume 7, issue 4
https://doi.org/10.5194/esd-7-937-2016
https://doi.org/10.5194/esd-7-937-2016
Research article
 | 
02 Dec 2016
Research article |  | 02 Dec 2016

A conceptual model of oceanic heat transport in the Snowball Earth scenario

Darin Comeau, Douglas A. Kurtze, and Juan M. Restrepo

Related authors

The impact of entrained air on ocean waves
Juan M. Restrepo, Alex Ayet, and Luigi Cavaleri
Nonlin. Processes Geophys., 28, 285–293, https://doi.org/10.5194/npg-28-285-2021,https://doi.org/10.5194/npg-28-285-2021, 2021
Short summary

Related subject area

Dynamics of the Earth system: models
Seasonal forecasting skill for the High Mountain Asia region in the Goddard Earth Observing System
Elias C. Massoud, Lauren Andrews, Rolf Reichle, Andrea Molod, Jongmin Park, Sophie Ruehr, and Manuela Girotto
Earth Syst. Dynam., 14, 147–171, https://doi.org/10.5194/esd-14-147-2023,https://doi.org/10.5194/esd-14-147-2023, 2023
Short summary
Assessing sensitivities of climate model weighting to multiple methods, variables, and domains in the south-central United States
Adrienne M. Wootten, Elias C. Massoud, Duane E. Waliser, and Huikyo Lee
Earth Syst. Dynam., 14, 121–145, https://doi.org/10.5194/esd-14-121-2023,https://doi.org/10.5194/esd-14-121-2023, 2023
Short summary
Global and northern-high-latitude net ecosystem production in the 21st century from CMIP6 experiments
Han Qiu, Dalei Hao, Yelu Zeng, Xuesong Zhang, and Min Chen
Earth Syst. Dynam., 14, 1–16, https://doi.org/10.5194/esd-14-1-2023,https://doi.org/10.5194/esd-14-1-2023, 2023
Short summary
Potential for bias in effective climate sensitivity from state-dependent energetic imbalance
Benjamin M. Sanderson and Maria Rugenstein
Earth Syst. Dynam., 13, 1715–1736, https://doi.org/10.5194/esd-13-1715-2022,https://doi.org/10.5194/esd-13-1715-2022, 2022
Short summary
Regional dynamical and statistical downscaling temperature, humidity and wind speed for the Beijing region under stratospheric aerosol injection geoengineering
Jun Wang, John C. Moore, Liyun Zhao, Chao Yue, and Zhenhua Di
Earth Syst. Dynam., 13, 1625–1640, https://doi.org/10.5194/esd-13-1625-2022,https://doi.org/10.5194/esd-13-1625-2022, 2022
Short summary

Cited articles

Abbot, D. S. and Pierrehumbert, R. T.: Mudball: Surface dust and Snowball Earth deglaciation, J. Geophys. Res.-Atmos., 115, https://doi.org/10.1029/2009JD012007, 2010.
Abbot, D. S., Voigt, A., and Koll, D.: The Jormungand global climate state and implications for Neoproterozoic glaciations, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2011JD015927, 2011.
Armour, K., Eisenman, I., Blanchard-Wrigglesworth, E., McCusker, K., and Bitz, C.: The reversibility of sea ice loss in a state-of-the-art climate model, Geophys. Res. Lett., 38, https://doi.org/10.1029/2011GL048739, 2011.
Ashkenazy, Y., Gildor, H., Losch, M., Macdonald, F. A., Schrag, D. P., and Tziperman, E.: Dynamics of a Snowball Earth ocean, Nature, 495, 90–93, 2013.
Ashkenazy, Y., Gildor, H., Losch, M., and Tziperman, E.: Ocean Circulation under Globally Glaciated Snowball Earth Conditions: Steady-State Solutions, J. Phys. Oceanogr, 44, 24–43, 2014.
Download
Short summary
The ocean is an important vehicle for redistributing Earth's heat from the tropics to high latitudes. We present a conceptual global climate model, with a focus on the coupling between oceanic heat transport and sea ice cover. We use this model to study the role of heat exchange between the ocean and ice components on the global climate system, including investigating the initiation of a global ice-covered climate ("Snowball Earth"), as well as the reversibility of the loss of polar ice caps.
Altmetrics
Final-revised paper
Preprint