Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.351 IF 4.351
  • IF 5-year value: 5.124 IF 5-year
    5.124
  • CiteScore value: 4.44 CiteScore
    4.44
  • SNIP value: 1.250 SNIP 1.250
  • IPP value: 4.10 IPP 4.10
  • SJR value: 2.203 SJR 2.203
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 29 Scimago H
    index 29
  • h5-index value: 31 h5-index 31
Volume 6, issue 2
Earth Syst. Dynam., 6, 719–730, 2015
https://doi.org/10.5194/esd-6-719-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Dynam., 6, 719–730, 2015
https://doi.org/10.5194/esd-6-719-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Nov 2015

Research article | 18 Nov 2015

Attribution in the presence of a long-memory climate response

K. Rypdal
Related authors  
Empirical growth models for the renewable energy sector
Kristoffer Rypdal
Adv. Geosci., 45, 35–44, https://doi.org/10.5194/adgeo-45-35-2018,https://doi.org/10.5194/adgeo-45-35-2018, 2018
Short summary
Can Limits to Growth in the Renewable Energy Sector be Inferred by Curve Fitting to Historical Data?
Kristoffer Rypdal
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2017-93,https://doi.org/10.5194/esd-2017-93, 2017
Revised manuscript not accepted
Short summary
Comment on "Scaling regimes and linear/nonlinear responses of last millennium climate to volcanic and solar forcing" by S. Lovejoy and C. Varotsos (2016)
Kristoffer Rypdal and Martin Rypdal
Earth Syst. Dynam., 7, 597–609, https://doi.org/10.5194/esd-7-597-2016,https://doi.org/10.5194/esd-7-597-2016, 2016
Short summary
Are there multiple scaling regimes in Holocene temperature records?
Tine Nilsen, Kristoffer Rypdal, and Hege-Beate Fredriksen
Earth Syst. Dynam., 7, 419–439, https://doi.org/10.5194/esd-7-419-2016,https://doi.org/10.5194/esd-7-419-2016, 2016
Short summary
Late Quaternary temperature variability described as abrupt transitions on a 1/f noise background
Martin Rypdal and Kristoffer Rypdal
Earth Syst. Dynam., 7, 281–293, https://doi.org/10.5194/esd-7-281-2016,https://doi.org/10.5194/esd-7-281-2016, 2016
Short summary
Related subject area  
Dynamics of the Earth system: concepts
Minimal dynamical systems model of the Northern Hemisphere jet stream via embedding of climate data
Davide Faranda, Yuzuru Sato, Gabriele Messori, Nicholas R. Moloney, and Pascal Yiou
Earth Syst. Dynam., 10, 555–567, https://doi.org/10.5194/esd-10-555-2019,https://doi.org/10.5194/esd-10-555-2019, 2019
Short summary
Fractional governing equations of transient groundwater flow in unconfined aquifers with multi-fractional dimensions in fractional time
M. Levent Kavvas, Tongbi Tu, Ali Ercan, and James Polsinelli
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-37,https://doi.org/10.5194/esd-2019-37, 2019
Revised manuscript accepted for ESD
Short summary
Millennium-length precipitation reconstruction over south-eastern Asia: a pseudo-proxy approach
Stefanie Talento, Lea Schneider, Johannes Werner, and Jürg Luterbacher
Earth Syst. Dynam., 10, 347–364, https://doi.org/10.5194/esd-10-347-2019,https://doi.org/10.5194/esd-10-347-2019, 2019
Short summary
Including the efficacy of land ice changes in deriving climate sensitivity from paleodata
Lennert B. Stap, Peter Köhler, and Gerrit Lohmann
Earth Syst. Dynam., 10, 333–345, https://doi.org/10.5194/esd-10-333-2019,https://doi.org/10.5194/esd-10-333-2019, 2019
Short summary
Climate System Response to Stratospheric Sulfate Aerosols: Sensitivity to Altitude of Aerosol Layer
Krishnamohan Krishna-Pillai Sukumara-Pillai, Govindasamy Bala, Long Cao, Lei Duan, and Ken Caldeira
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-21,https://doi.org/10.5194/esd-2019-21, 2019
Revised manuscript accepted for ESD
Short summary
Cited articles  
Blender, R. and Fraedrich, K.: Long time memory in global warming simulations, Geophys. Res. Lett., 30, 1769, https://doi.org/10.1029/2003GL017666, 2003.
Brohan, P., Kennedy, J. J., Harris, I., Tett, S. F. B., and Jones, P. D.: Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, J. Geophys. Res, 111, D12106, https://doi.org/10.1029/2005JD006548, 2006.
Burnham, K. P. and Anderson, D. R.: Multimodel inference: understanding AIC and BIC in model selection, Sociol. Method. Res., 33, 261–304, https://doi.org/10.1177/0049124104268644, 2004.
Camp, C. D. and Tung, K. K.: Surface warming by the solar cycle as revealed by the composite difference projection, Geophys. Res. Lett., 34, L14703, https://doi.org/10.1029/2007GL030207, 2007.
Canty, T., Mascioli, N. R., Smarte, M. D., and Salawitch, R. J.: An empirical model of global climate – Part 1: A critical evaluation of volcanic cooling, Atmos. Chem. Phys., 13, 3997–4031, https://doi.org/10.5194/acp-13-3997-2013, 2013.
Publications Copernicus
Download
Short summary
Human and natural forces drive climate change. If we have a model for the climate response to forcing, we can identify distinct fingerprints for each force, and their footprint in the observed global temperature can be determined by statistical analysis. This process is called attribution. This work examines the effect delays (long-range memory) in the climate response have on the magnitude of the various footprints. The magnitude of the human footprint turns out to be only weakly affected.
Human and natural forces drive climate change. If we have a model for the climate response to...
Citation