Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 4.351 IF 4.351
  • IF 5-year value: 5.124 IF 5-year
    5.124
  • CiteScore value: 4.44 CiteScore
    4.44
  • SNIP value: 1.250 SNIP 1.250
  • IPP value: 4.10 IPP 4.10
  • SJR value: 2.203 SJR 2.203
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 29 Scimago H
    index 29
  • h5-index value: 31 h5-index 31
Volume 6, issue 2
Earth Syst. Dynam., 6, 617-636, 2015
https://doi.org/10.5194/esd-6-617-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Dynam., 6, 617-636, 2015
https://doi.org/10.5194/esd-6-617-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 25 Sep 2015

Research article | 25 Sep 2015

Inter-annual and seasonal trends of vegetation condition in the Upper Blue Nile (Abay) Basin: dual-scale time series analysis

E. Teferi1, S. Uhlenbrook2,3, and W. Bewket4 E. Teferi et al.
  • 1Addis Ababa University, Center for Environment and Development Studies, P.O. Box 1176, Addis Ababa, Ethiopia
  • 2UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands
  • 3Delft University of Technology, Water Resources Section, P.O. Box 5048, GA Delft, the Netherlands
  • 4Addis Ababa University, Department of Geography and Environmental Studies, P.O. Box 1176, Addis Ababa, Ethiopia

Abstract. A long-term decline in ecosystem functioning and productivity, often called land degradation, is a serious environmental challenge to Ethiopia that needs to be understood so as to develop sustainable land use strategies. This study examines inter-annual and seasonal trends of vegetation cover in the Upper Blue Nile (UBN) or Abbay Basin. The Advanced Very High Resolution Radiometer (AVHRR)-based Global Inventory, Monitoring, and Modeling Studies (GIMMS) normalized difference vegetation index (NDVI) was used for long-term vegetation trend analysis at low spatial resolution. Moderate Resolution Imaging Spectroradiometer (MODIS) NDVI data (MOD13Q1) were used for medium-scale vegetation trend analysis. Harmonic analyses and non-parametric trend tests were applied to both GIMMS NDVI (1981–2006) and MODIS NDVI (2001–2011) data sets. Based on a robust trend estimator (Theil–Sen slope), most parts of the UBN (~ 77 %) showed a positive trend in monthly GIMMS NDVI, with a mean rate of 0.0015 NDVI units (3.77 % yr−1), out of which 41.15 % of the basin depicted significant increases (p < 0.05), with a mean rate of 0.0023 NDVI units (5.59 % yr−1) during the period. However, the MODIS-based vegetation trend analysis revealed that about 36 % of the UBN showed a significant decreasing trend (p < 0.05) over the period 2001–2011 at an average rate of 0.0768 NDVI yr−1. This indicates that the greening trend of the vegetation condition was followed by decreasing trend since the mid-2000s in the basin, which requires the attention of land users and decision makers. Seasonal trend analysis was found to be very useful to identify changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis was performed. Over half (60 %) of the Abay Basin was found to exhibit significant trends in seasonality over the 25-year period (1982–2006). About 17 and 16 % of the significant trends consisted of areas experiencing a uniform increase in NDVI throughout the year and extended growing season, respectively. These areas were found primarily in shrubland and woodland regions. The study demonstrated that integrated analysis of inter-annual and intra-annual trends based on GIMMS and MODIS enables a more robust identification of changes in vegetation condition.

Publications Copernicus
Download
Short summary
This study concludes that integrated analysis of course and fine-scale, inter-annual and intra-annual trends enables a more robust identification of changes in vegetation condition. Seasonal trend analysis was found to be very useful in identifying changes in vegetation condition that could be masked if only inter-annual vegetation trend analysis were performed. The finer-scale intra-annual trend analysis revealed trends that were more linked to human activities.
This study concludes that integrated analysis of course and fine-scale, inter-annual and...
Citation
Share