Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year
    4.522
  • CiteScore value: 4.14 CiteScore
    4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H <br class='hide-on-tablet hide-on-mobile'>index value: 22 Scimago H
    index 22
Volume 5, issue 2
Earth Syst. Dynam., 5, 471-489, 2014
https://doi.org/10.5194/esd-5-471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Earth Syst. Dynam., 5, 471-489, 2014
https://doi.org/10.5194/esd-5-471-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Dec 2014

Research article | 05 Dec 2014

Contrasting roles of interception and transpiration in the hydrological cycle – Part 2: Moisture recycling

R. J. van der Ent1, L. Wang-Erlandsson2,1, P. W. Keys2,3, and H. H. G. Savenije1 R. J. van der Ent et al.
  • 1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
  • 2Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
  • 3Department of Atmospheric Science, Colorado State University, Fort Collins, USA

Abstract. The contribution of land evaporation to local and remote precipitation (i.e. moisture recycling) is of significant importance to sustain water resources and ecosystems. But how important are different evaporation components in sustaining precipitation? This is the first paper to present moisture recycling metrics for partitioned evaporation. In the companion paper Wang-Erlandsson et al. (2014) (hereafter Part 1), evaporation was partitioned into vegetation interception, floor interception, soil moisture evaporation and open-water evaporation (constituting the direct, purely physical fluxes, largely dominated by interception), and transpiration (delayed, biophysical flux). Here, we track these components forward as well as backward in time. We also include age tracers to study the atmospheric residence times of these evaporation components. We present a new image of the global hydrological cycle that includes quantification of partitioned evaporation and moisture recycling as well as the atmospheric residence times of all fluxes. We demonstrate that evaporated interception is more likely to return as precipitation on land than transpired water. On average, direct evaporation (essentially interception) is found to have an atmospheric residence time of 8 days, while transpiration typically resides for 9 days in the atmosphere. The process scale over which evaporation recycles is more local for interception compared to transpiration; thus interception generally precipitates closer to its evaporative source than transpiration, which is particularly pronounced outside the tropics. We conclude that interception mainly works as an intensifier of the local hydrological cycle during wet spells and wet seasons. On the other hand, transpiration remains active during dry spells and dry seasons and is transported over much larger distances downwind, where it can act as a significant source of moisture. Thus, as various land-use types can differ considerably in their partitioning between interception and transpiration, our results stress that land-use changes (e.g. forest-to-cropland conversion) do not only affect the magnitude of moisture recycling, but could also influence the moisture recycling patterns and lead to a redistribution of water resources. As such, this research highlights that land-use changes can have complex effects on the atmospheric branch of the hydrological cycle.

Publications Copernicus
Download
Citation
Share