Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 3.635 IF 3.635
  • IF 5-year<br/> value: 3.869 IF 5-year
    3.869
  • CiteScore<br/> value: 4.15 CiteScore
    4.15
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 5, 441-469, 2014
https://doi.org/10.5194/esd-5-441-2014
© Author(s) 2014. This work is distributed under
the Creative Commons Attribution 3.0 License.
Research article
05 Dec 2014
Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land
L. Wang-Erlandsson1,2, R. J. van der Ent1, L. J. Gordon2, and H. H. G. Savenije1 1Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Delft, the Netherlands
2Stockholm Resilience Centre, Stockholm University, Stockholm, Sweden
Abstract. Moisture recycling, the contribution of terrestrial evaporation to precipitation, has important implications for both water and land management. Although terrestrial evaporation consists of different fluxes (i.e. transpiration, vegetation interception, floor interception, soil moisture evaporation, and open-water evaporation), moisture recycling (terrestrial evaporation–precipitation feedback) studies have up to now only analysed their combined total. This paper constitutes the first of two companion papers that investigate the characteristics and roles of different evaporation fluxes for land–atmosphere interactions. Here, we investigate the temporal characteristics of partitioned evaporation on land and present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) – a hydrological land-surface model developed to provide inputs to moisture tracking. STEAM estimates a mean global terrestrial evaporation of 73 900 km3 year-1, of which 59% is transpiration. Despite a relatively simple model structure, validation shows that STEAM produces realistic evaporative partitioning and hydrological fluxes that compare well with other global estimates over different locations, seasons, and land-use types. Using STEAM output, we show that the terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). Most transpiration occurs several hours or days after a rain event, whereas interception is immediate. In agreement with previous research, our simulations suggest that the vegetation's ability to transpire by retaining and accessing soil moisture at greater depth is critical for sustained evaporation during the dry season. We conclude that the differences in temporal characteristics between evaporation fluxes are substantial and reasonably can cause differences in moisture recycling, which is investigated more in the companion paper (van der Ent et al., 2014, hereafter Part 2).

Citation: Wang-Erlandsson, L., van der Ent, R. J., Gordon, L. J., and Savenije, H. H. G.: Contrasting roles of interception and transpiration in the hydrological cycle – Part 1: Temporal characteristics over land, Earth Syst. Dynam., 5, 441-469, https://doi.org/10.5194/esd-5-441-2014, 2014.
Publications Copernicus
Download
Short summary
We investigate the temporal characteristics of partitioned evaporation on land, and we present STEAM (Simple Terrestrial Evaporation to Atmosphere Model) -- a hydrological land-surface model developed to provide inputs to moisture tracking. The terrestrial residence timescale of transpiration (days to months) has larger inter-seasonal variation and is substantially longer than that of interception (hours). This can cause differences in moisture recycling, which is investigated more in Part 2.
We investigate the temporal characteristics of partitioned evaporation on land, and we present...
Share