Research article
06 Nov 2014
Research article | 06 Nov 2014
Mechanism for potential strengthening of Atlantic overturning prior to collapse
D. Ehlert and A. Levermann
Related authors
The economically optimal warming limit of the planet
Falko Ueckerdt, Katja Frieler, Stefan Lange, Leonie Wenz, Gunnar Luderer, and Anders Levermann
Earth Syst. Dynam., 10, 741–763, https://doi.org/10.5194/esd-10-741-2019,https://doi.org/10.5194/esd-10-741-2019, 2019
Short summary
A simple stress-based cliff-calving law
Tanja Schlemm and Anders Levermann
The Cryosphere, 13, 2475–2488, https://doi.org/10.5194/tc-13-2475-2019,https://doi.org/10.5194/tc-13-2475-2019, 2019
Short summary
Projecting Antarctica's contribution to future sea level rise from basal ice-shelf melt using linear response functions of 16 ice sheet models (LARMIP-2)
Anders Levermann, Ricarda Winkelmann, Torsten Albrecht, Heiko Goelzer, Nicholas R. Golledge, Ralf Greve, Philippe Huybrechts, Jim Jordan, Gunter Leguy, Daniel Martin, Mathieu Morlighem, Frank Pattyn, David Pollard, Aurelien Quiquet, Christian Rodehacke, Helene Seroussi, Johannes Sutter, Tong Zhang, Jonas Van Breedam, Robert DeConto, Christophe Dumas, Julius Garbe, G. Hilmar Gudmundsson, Matthew J. Hoffman, Angelika Humbert, Thomas Kleiner, William Lipscomb, Malte Meinshausen, Esmond Ng, Mauro Perego, Stephen F. Price, Fuyuki Saito, Nicole-Jeanne Schlegel, Sainan Sun, and Roderik S. W. van de Wal
Earth Syst. Dynam. Discuss., https://doi.org/10.5194/esd-2019-23,https://doi.org/10.5194/esd-2019-23, 2019
Revised manuscript accepted for ESD
Short summary
A framework for the cross-sectoral integration of multi-model impact projections: land use decisions under climate impacts uncertainties
K. Frieler, A. Levermann, J. Elliott, J. Heinke, A. Arneth, M. F. P. Bierkens, P. Ciais, D. B. Clark, D. Deryng, P. Döll, P. Falloon, B. Fekete, C. Folberth, A. D. Friend, C. Gellhorn, S. N. Gosling, I. Haddeland, N. Khabarov, M. Lomas, Y. Masaki, K. Nishina, K. Neumann, T. Oki, R. Pavlick, A. C. Ruane, E. Schmid, C. Schmitz, T. Stacke, E. Stehfest, Q. Tang, D. Wisser, V. Huber, F. Piontek, L. Warszawski, J. Schewe, H. Lotze-Campen, and H. J. Schellnhuber
Earth Syst. Dynam., 6, 447–460, https://doi.org/10.5194/esd-6-447-2015,https://doi.org/10.5194/esd-6-447-2015, 2015
Projecting Antarctic ice discharge using response functions from SeaRISE ice-sheet models
A. Levermann, R. Winkelmann, S. Nowicki, J. L. Fastook, K. Frieler, R. Greve, H. H. Hellmer, M. A. Martin, M. Meinshausen, M. Mengel, A. J. Payne, D. Pollard, T. Sato, R. Timmermann, W. L. Wang, and R. A. Bindschadler
Earth Syst. Dynam., 5, 271–293, https://doi.org/10.5194/esd-5-271-2014,https://doi.org/10.5194/esd-5-271-2014, 2014
Related subject area
Cascading transitions in the climate system
Mark M. Dekker, Anna S. von der Heydt, and Henk A. Dijkstra
Earth Syst. Dynam., 9, 1243–1260, https://doi.org/10.5194/esd-9-1243-2018,https://doi.org/10.5194/esd-9-1243-2018, 2018
Short summary
The climate of a retrograde rotating Earth
Uwe Mikolajewicz, Florian Ziemen, Guido Cioni, Martin Claussen, Klaus Fraedrich, Marvin Heidkamp, Cathy Hohenegger, Diego Jimenez de la Cuesta, Marie-Luise Kapsch, Alexander Lemburg, Thorsten Mauritsen, Katharina Meraner, Niklas Röber, Hauke Schmidt, Katharina D. Six, Irene Stemmler, Talia Tamarin-Brodsky, Alexander Winkler, Xiuhua Zhu, and Bjorn Stevens
Earth Syst. Dynam., 9, 1191–1215, https://doi.org/10.5194/esd-9-1191-2018,https://doi.org/10.5194/esd-9-1191-2018, 2018
Short summary
Multivariate anomaly detection for Earth observations: a comparison of algorithms and feature extraction techniques
Milan Flach, Fabian Gans, Alexander Brenning, Joachim Denzler, Markus Reichstein, Erik Rodner, Sebastian Bathiany, Paul Bodesheim, Yanira Guanche, Sebastian Sippel, and Miguel D. Mahecha
Earth Syst. Dynam., 8, 677–696, https://doi.org/10.5194/esd-8-677-2017,https://doi.org/10.5194/esd-8-677-2017, 2017
Short summary
Young people's burden: requirement of negative CO2 emissions
James Hansen, Makiko Sato, Pushker Kharecha, Karina von Schuckmann, David J. Beerling, Junji Cao, Shaun Marcott, Valerie Masson-Delmotte, Michael J. Prather, Eelco J. Rohling, Jeremy Shakun, Pete Smith, Andrew Lacis, Gary Russell, and Reto Ruedy
Earth Syst. Dynam., 8, 577–616, https://doi.org/10.5194/esd-8-577-2017,https://doi.org/10.5194/esd-8-577-2017, 2017
Short summary
Emission metrics for quantifying regional climate impacts of aviation
Marianne T. Lund, Borgar Aamaas, Terje Berntsen, Lisa Bock, Ulrike Burkhardt, Jan S. Fuglestvedt, and Keith P. Shine
Earth Syst. Dynam., 8, 547–563, https://doi.org/10.5194/esd-8-547-2017,https://doi.org/10.5194/esd-8-547-2017, 2017
A network-based detection scheme for the jet stream core
Sonja Molnos, Tarek Mamdouh, Stefan Petri, Thomas Nocke, Tino Weinkauf, and Dim Coumou
Earth Syst. Dynam., 8, 75–89, https://doi.org/10.5194/esd-8-75-2017,https://doi.org/10.5194/esd-8-75-2017, 2017
Framing hydropower as green energy: assessing drivers, risks and tensions in the Eastern Himalayas
R. Ahlers, J. Budds, D. Joshi, V. Merme, and M. Zwarteveen
Earth Syst. Dynam., 6, 195–204, https://doi.org/10.5194/esd-6-195-2015,https://doi.org/10.5194/esd-6-195-2015, 2015
Short summary
Cited articles
Dijkstra, H. A.: Characterization of the multiple equilibria regime in a global ocean model, Tellus A, 59, 695–705, 2007.
Drijfhout, S. S., Weber, S. L., and van der Swaluw, E.: The stability of the MOC as diagnosed from model projections for pre-industrial, present and future climates, Clim. Dynam., 37, 1575–1586, https://doi.org/10.1007/s00382-010-0930-z, 2011.
Eby, M., Zickfeld, K., Montenegro, A., Archer, D., Meissner, K. J., and Weaver, A. J.: Lifetime of Anthropogenic Climate Change: Millennial Time Scales of Potential CO
2 and Surface Temperature Perturbations, J. Climate, 22, 2501–2511, https://doi.org/10.1175/2008JCLI2554.1, 2009.
Fürst, J. and Levermann, A.: Minimal model of a wind- and mixing-driven overturning – threshold behaviour for both driving mechanisms, Clim. Dynam., 38, 239–260, https://doi.org/10.1007/s00382-011-1003-7, 2012.
Gnanadesikan, A.: A simple predictive model for the structure of the oceanic pycnocline, Science, 283, 2077–2079, 1999.
Goswami, B. N., Madhusoodanan, M. S., Neema, C. P., and Sengupta, D.: A physical mechanism for North Atlantic SST influence on the Indian summer monsoon, Geophys. Res. Lett., 33, L02706, https://doi.org/10.1007/s00382-011-1003-7, 2006.
Hawkins, E., Smith, R. S., Allison, L. C., Gregory, J. M., Woollings, T. J., Pohlmann, H., and De Cuevas, B.: Bistability of the Atlantic overturning circulation in a global climate model and links to ocean freshwater transport, Geophys. Res. Lett., 38, 1–6, 2011.
Huang, R. X.: Mixing and Energetics of the Oceanic Thermohaline Circulation, J. Phys. Oceanogr., 29, 727–746, 1999.
Huisman, S. E., den Toom, M., Dijkstra, H. A., and Drijfhout, S.: An Indicator of the Multiple Equilibria Regime of the Atlantic Meridional Overturning Circulation, J. Phys. Oceanogr., 40, 551–567, 2010.
Kuhlbrodt, T., Griesel, A., Montoya, M., Levermann, A., Hofmann, M., and Rahmstorf, S.: On the driving processes of the Atlantic meridional overturning circulation, Rev. Geophys., 45, RG2001, https://doi.org/10.1029/2004RG000166, 2007.
Kuhlbrodt, T., Rahmstorf, S., Zickfeld, K., Vikebo, F. B., Sundby, S., Hofmann, M., Link, P. M., Bondeau, A., Cramer, W., and Jaeger, C.: An Integrated Assessment of changes in the thermohaline circulation, Climatic Change, 96, 489–537, 2009.
Laurian, A., Drijfhout, S. S., Hazeleger, W., and Hurk, B.: Response of the Western European climate to a collapse of the thermohaline circulation, Clim. Dynam., 34, 689–697, 2009.
Lenton, T. M.: Early warning of climate tipping points, Nat. Clim. Change, 1, 201–209, 2011.
Lenton, T. M., Held, H., Kriegler, E., Hall, J. W., Lucht, W., Rahmstorf, S., and Schellnhuber, H. J.: Tipping elements in the Earth's climate system, P. Natl. Acad. Sci., 105, 1786–1793, 2008.
Levermann, A. and Fürst, J.: Atlantic pycnocline theory scrutinized using a coupled climate model, Geophys. Res. Lett., 37, L14602, https://doi.org/10.1029/2010GL044180, 2010.
Levermann, A. and Griesel, A.: Solution of a Model for the Oceanic Pycnocline Depth: Scaling of Overturning Strength and Meridional Pressure Difference, Geophys. Res. Lett., 31, L17302, https://doi.org/10.1029/2004GL020678, 2004.
Levermann, A., Griesel, A., Hofmann, M., Montoya, M., and Rahmstorf, S.: Dynamic sea level changes following changes in the thermohaline circulation, Clim. Dynam., 24, 347–354, 2005.
Levermann, A., Bamber, J., Drijfhout, S., Ganopolski, A., Haeberli, W., Harris, N., Huss, M., Krueger, K., Lenton, T., Lindsay, R., Notz, D., Wadhams, P., and Weber, S.: Potential climatic transitions with profound impact on Europe, Climatic Change, 110, 845–878, 2012.
Manabe, S. and Stouffer, R. J.: Simulation of abrupt climate change induced by freshwater input to the North Atlantic Ocean, Nature, 378, 165–167, 1995.
Marotzke, J.: Boundary Mixing and the Dynamics of Three-Dimensional Thermohaline Circulations, J. Phys. Oceanogr., 27, 1713–28, 1997.
Marzeion, B. and Drange, H.: Diapycnal mixing in a conceptual model of the Atlantic Meridional Overturning Circulation, Deep-Sea Res. Pt. II, 53, 226–238, 2006.
Munk, W.: Abyssal recipes, Deep-Sea Res., 13, 707–730, 1966.
Rahmstorf, S.: On the freshwater forcing and transport of the Atlantic thermohaline circulation, Clim. Dynam., 12, 799–811, 1996.
Rahmstorf, S., Crucifix, M., Ganopolski, A., Goosse, H., Kamenkovich, I., Knutti, R., Lohmann, G., Marsh, B., Mysak, L. A., Wang, Z., and Weaver, A.: Thermohaline circulation hysteresis: A model intercomparison, Geophys. Res. Lett., 32, L23605, https://doi.org/10.1029/2005GL023655, 2005.
Scheffer, M., Bascompte, J., Brock, W. A., Brovkin, V., Carpenter, S. R., Dakos, V., Held, H., van Nes, E. H., Rietkerk, M., and Sugihara, G.: Early-warning signals for critical transitions, Nature, 461, 53–59, 2009.
Schewe, J. and Levermann, A.: The role of meridional density differences for a wind-driven overturning circulation, Clim. Dynam., 34, 547–556, 2010.
Schmittner, A.: Decline of the marine ecosystem caused by a reduction in the Atlantic overturning circulation, Nature, 434, 628–633, 2005.
Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus, 13, 224–230, 1961.
Stouffer, R. J., Yin, J., Gregory, J. M., Dixon, K. W., Spelman, M. J., Hurlin, W., Weaver, A. J., Eby, M., Flato, G. M., Hasumi, H., Hu, A., Jungclaus, J. H., Kamenkovich, I. V., Levermann, A., Montoya, M., Murakami, S., Nawrath, S., Oka, A., Peltier, W. R., Robitaille, D. Y., Sokolov, A. P., Vettoretti, G., and Weber, S. L.: Investigating the Causes of the Response of the Thermohaline Circulation to Past and Future Climate Changes, J. Climate, 19, 1365–1387, 2006b.
Vellinga, M. and Wood, R. A.: Global climatic impacts of a collapse of the Atlantic thermohaline circulation, Climatic Change, 54, 251–267, 2002.
Weaver, A. J., Eby, M., Wiebe, E. C., Bitz, C. M., Duffy, P. B., Ewen, T. L., Fanning, A. F., Holland, M. M., MacFadyen, A., Matthews, H. D., Meissner, K. J., Saenko, O., Schmittner, A., Wang, H., and Yoshimori, M.: The UVic earth system climate model: Model description, climatology, and applications to past, present and future climates, Atmos.-Ocean, 39, 361–428, https://doi.org/10.1080/07055900.2001.9649686, 2001.
Weaver, A. J., Sedlá\ucek, J., Eby, M., Alexander, K., Crespin, E., Fichefet, T., Philippon-Berthier, G. L., Joos, F., Kawamiya, M., Matsumoto, K., Steinacher, M., Tachiiri, K., Tokos, K., Yoshimori, M., and Zickfeld, K.: Stability of the Atlantic meridional overturning circulation: A model intercomparison, Geophys. Res. Lett., 39, L20709, https://doi.org/10.1029/2012GL053763, 2012.
Wunsch, C. and Ferrari, R.: Vertical mixing, energy and the general circulation of the oceans, Annu. Rev. Fluid Mech., 36, 281–314, 2004.