Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 4, issue 2 | Copyright

Special issue: Impacts of Land-Uses and Land-Cover Changes (LULCC) on the...

Earth Syst. Dynam., 4, 409-424, 2013
https://doi.org/10.5194/esd-4-409-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 18 Nov 2013

Research article | 18 Nov 2013

Can bioenergy cropping compensate high carbon emissions from large-scale deforestation of high latitudes?

P. Dass1,2, C. Müller1, V. Brovkin3, and W. Cramer1,* P. Dass et al.
  • 1Potsdam Institute for Climate Impact Research, Potsdam, Germany
  • 2International Max Planck Research School on Earth System Modelling, Hamburg, Germany
  • 3Max Planck Institute for Meteorology, Hamburg, Germany
  • *now at: Mediterranean Institute for marine and terrestrial Biodiversity and Ecology, Marseille, France

Abstract. Numerous studies have concluded that deforestation of the high latitudes result in a global cooling. This is mainly because of the increased albedo of deforested land which dominates over other biogeophysical and biogeochemical mechanisms in the energy balance. This dominance, however, may be due to an underestimation of the biogeochemical response, as carbon emissions are typically at or below the lower end of estimates. Here, we use the dynamic global vegetation model LPJmL for a better estimate of the carbon cycle under such large-scale deforestation. These studies are purely theoretical in order to understand the role of vegetation in the energy balance and the earth system. They must not be mistaken as possible mitigation options, because of the devastating effects on pristine ecosystems. For realistic assumptions of land suitability, the total emissions computed in this study are higher than that of previous studies assessing the effects of boreal deforestation. The warming due to biogeochemical effects ranges from 0.12 to 0.32 °C, depending on the climate sensitivity. Using LPJmL to assess the mitigation potential of bioenergy plantations in the suitable areas of the deforested region, we find that the global biophysical bioenergy potential is 68.1 ± 5.6 EJ yr−1 of primary energy at the end of the 21st century in the most plausible scenario. The avoided combustion of fossil fuels over the time frame of this experiment would lead to further cooling. However, since the carbon debt caused by the cumulative emissions is not repaid by the end of the 21st century, the global temperatures would increase by 0.04 to 0.11 °C. The carbon dynamics in the high latitudes especially with respect to permafrost dynamics and long-term carbon losses, require additional attention in the role for the Earth's carbon and energy budget.

Publications Copernicus
Special issue
Download
Citation
Share