Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 4, issue 2 | Copyright
Earth Syst. Dynam., 4, 237-251, 2013
https://doi.org/10.5194/esd-4-237-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 31 Jul 2013

Research article | 31 Jul 2013

Carbon farming in hot, dry coastal areas: an option for climate change mitigation

K. Becker1, V. Wulfmeyer2, T. Berger3, J. Gebel4, and W. Münch5 K. Becker et al.
  • 1Institute for Animal Production in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
  • 2Institute of Physics and Meteorology, University of Hohenheim, 70593 Stuttgart, Germany
  • 3Institute for Agricultural Economics and Social Sciences in the Tropics and Subtropics, University of Hohenheim, 70593 Stuttgart, Germany
  • 4S.T.E.P. Consulting GmbH, 52066 Aachen, Germany
  • 5EnBW Energie Baden-Württemberg A.G., 76131 Karlsruhe, Germany

Abstract. We present a comprehensive, interdisciplinary project which demonstrates that large-scale plantations of Jatropha curcas – if established in hot, dry coastal areas around the world – could capture 17–25 t of carbon dioxide per hectare per year from the atmosphere (over a 20 yr period). Based on recent farming results it is confirmed that the Jatropha curcas plant is well adapted to harsh environments and is capable of growing alone or in combination with other tree and shrub species with minimal irrigation in hot deserts where rain occurs only sporadically. Our investigations indicate that there is sufficient unused and marginal land for the widespread cultivation of Jatropha curcas to have a significant impact on atmospheric CO2 levels at least for several decades.

In a system in which desalinated seawater is used for irrigation and for delivery of mineral nutrients, the sequestration costs were estimated to range from 42–63 EUR per tonne CO2. This result makes carbon farming a technology that is competitive with carbon capture and storage (CCS). In addition, high-resolution simulations using an advanced land-surface–atmosphere model indicate that a 10 000 km2 plantation could produce a reduction in mean surface temperature and an onset or increase in rain and dew fall at a regional level. In such areas, plant growth and CO2 storage could continue until permanent woodland or forest had been established. In other areas, salinization of the soil may limit plant growth to 2–3 decades whereupon irrigation could be ceased and the captured carbon stored as woody biomass.

Publications Copernicus
Download
Citation
Share