Archer, C. L. and Caldeira, K.: Historical trends in the jet streams, Geophys. Res. Lett., 35, L08803, https://doi.org/10.1029/2008GL033614, 2008. a

Avila, M. and Hof, B.: Nature of laminar-turbulence intermittency in shear
flows, Phys. Rev. E, 87, 063012, https://doi.org/10.1103/PhysRevE.87.063012, 2013. a

Belmecheri, S., Babst, F., Hudson, A. R., Betancourt, J., and Trouet, V.:
Northern Hemisphere jet stream position indices as diagnostic tools for
climate and ecosystem dynamics, Earth Interact., 21, 1–23, 2017. a

Benzi, R., Parisi, G., Sutera, A., and Vulpiani, A.: Stochastic resonance in
climatic change, Tellus, 34, 10–16, 1982. a

Charney, J. G. and DeVore, J. G.: Multiple flow equilibria in the atmosphere
and blocking, J. Atmos. Sci., 36, 1205–1216, 1979. a

Collet, P. and Eckmann, J.-P.: Iterated maps on the interval as dynamical
systems, Springer Science & Business Media, Birkhäuser, Basel, 2009. a

Dee, D. P., Uppala, S., Simmons, A., Berrisford, P., Poli, P., Kobayashi, S.,
Andrae, U., Balmaseda, M., Balsamo, G., Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bidlot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer, A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V., Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally, A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey, C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system, Q. J. Roy. Meteorol. Soc., 137, 553–597, 2011. a

Dijkstra, H. A. and Ghil, M.: Low-frequency variability of the large-scale
ocean circulation: A dynamical systems approach, Rev. Geophys., 43, RG3002, https://doi.org/10.1029/2002RG000122, 2005. a

Dole, R., Hoerling, M., Perlwitz, J., Eischeid, J., Pegion, P., Zhang, T.,
Quan, X.-W., Xu, T., and Murray, D.: Was there a basis for anticipating the
2010 Russian heat wave?, Mon. Weather Rev., 38, L06702, https://doi.org/10.1029/2010GL046582, 2011. a

Duchon, C. E.: Lanczos filtering in one and two dimensions, J. Appl. Meteorol., 18, 1016–1022, 1979. a

Faranda, D., Pons, F. M. E., Dubrulle, B., Daviaud, F., Saint-Michel, B.,
Herbert,É., and Cortet, P.-P.: Modelling and analysis of turbulent
datasets using Auto Regressive Moving Average processes, Phys. Fluids, 26, 105101, https://doi.org/10.1063/1.4896637, 2014. a, b

Faranda, D., Masato, G., Moloney, N., Sato, Y., Daviaud, F., Dubrulle, B., and Yiou, P.: The switching between zonal and blocked mid-latitude atmospheric circulation: a dynamical system perspective, Clim. Dynam., 47,
1587–1599, 2016a. a

Faranda, D., Alvarez-Castro, M. C., and Yiou, P.: Return times of hot and cold days via recurrences and extreme value theory, Clim. Dynam., 47,
3803–3815, 2016b. a

Faranda, D., Sato, Y., Saint-Michel, B., Wiertel, C., Padilla, V., Dubrulle,
B., and Daviaud, F.: Stochastic chaos in a turbulent swirling flow, Phys.
Rev. Lett., 119, 014502, https://doi.org/10.1038/srep41278, 2017a. a, b, c

Faranda, D., Messori, G., Alvarez-Castro, M. C., and Yiou, P.: Dynamical properties and extremes of Northern Hemisphere climate fields over the past 60 years, Nonlin. Processes Geophys., 24, 713–725, https://doi.org/10.5194/npg-24-713-2017, 2017b. a, b, c, d

Faranda, D., Messori, G., and Yiou, P.: Dynamical proxies of North Atlantic
predictability and extremes, Scient. Rep., 7, 41278, https://doi.org/10.1103/PhysRevLett.119.014502, 2017c. a, b, c, d

Faranda, D., Alvarez-Castro, M. C., Messori, G., Rodrigues, D., and Yiou, P.:
The hammam effect or how a warm ocean enhances large scale atmospheric
predictability, Nat. Commun., 10, 1316, https://doi.org/10.1038/s41467-019-09305-8, 2019a. a

Faranda, D., Messori, G., and Vannitsem, S.: Attractor dimension of time-averaged climate observables: insights from a low-order ocean-atmosphere
model, Tellus A, 71, 1–11, 2019b. a

Fraedrich, K.: Estimating the dimensions of weather and climate attractors,
J. Atmos. Sci., 43, 419–432, 1986. a

Frederiksen, J.: A unified three-dimensional instability theory of the onset of blocking and cyclogenesis, J. Atmos. Sci., 39, 969–982, 1982. a

Frederiksen, J. S. and Davies, A. G.: Eddy viscosity and stochastic backscatter parameterizations on the sphere for atmospheric circulation models, J. Atmos. Sci., 54, 2475–2492, 1997. a

Freitas, A. C. M., Freitas, J. M., and Todd, M.: Hitting time statistics and
extreme value theory, Probab. Theor. Rel., 147, 675–710, 2010. a

Freitas, A. C. M., Freitas, J. M., and Todd, M.: The extremal index, hitting
time statistics and periodicity, Adv. Math., 231, 2626–2665, 2012. a

Ghil, M.: Dynamics, statistics and predictability of planetary flow regimes,
in: Irreversible Phenomena and Dynamical Systems Analysis in Geosciences,
Springer, Dordrecht, 241–283, 1987. a

Grassberger, P.: Do climatic attractors exist?, Nature, 323, 609–612, 1986. a

Hadlock, R. and Kreitzberg, C. W.: The Experiment on Rapidly Intensifying
Cyclones over the Atlantic (ERICA) field study: Objectives and plans, B. Am. Meteorol. Soc., 69, 1309–1320, 1988. a

Haines, K. and Malanotte-Rizzoli, P.: Isolated anomalies in westerly jet
streams: A unified approach, J. Atmos. Sci., 48, 510–526, 1991. a

Hansen, A. R.: Observational characteristics of atmospheric planetary waves
with bimodal amplitude distributions, Adv. Geophys., 29, 101–133, 1986. a

Held, I. M. and Larichev, V. D.: A scaling theory for horizontally homogeneous, baroclinically unstable flow on a beta plane, J. Atmos. Sci., 53, 946–952, 1996. a

Jacoby, T., Read, P., Williams, P. D., and Young, R.: Generation of
inertia–gravity waves in the rotating thermal annulus by a localised boundary layer instability, Geophys. Astrophys. Fluid Dynam., 105, 161–181, 2011. a

Kaneko, K.: Transition from Torus to Chaos Accompanied by Frequency Lockings
with Symmetry Breaking: In Connection with the Coupled-Logistic Map, Prog.
Theor. Phys., 69, 1427–1442, 1983. a, b

Kaneko, K.: Spatial period-doubling in open flow, Phys. Lett. A, 111,
321–325, 1985. a

Kaneko, K.: Clustering, coding, switching, hierarchical ordering, and control
in a network of chaotic elements, Physica D, 41, 137–172, 1990. a

Kitsios, V. and Frederiksen, J. S.: Subgrid Parameterizations of the
Eddy–Eddy, Eddy–Mean Field, Eddy–Topographic, Mean Field–Mean Field, and
Mean Field–Topographic Interactions in Atmospheric Models, J. Atmos. Sci., 76, 457–477, 2019. a

Koch, P., Wernli, H., and Davies, H. C.: An event-based jet-stream climatology and typology, Int. J. Climatol., 26, 283–301, 2006. a

Kolmogorov, A.: AN Kolmogorov, Dokl. Akad. Nauk SSSR, 30, 301, 1941. a

Kraichnan, R. H.: Dynamics of nonlinear stochastic systems, J. Math. Phys., 2, 124–148, 1961. a

Lachmy, O. and Harnik, N.: Wave and Jet Maintenance in Different Flow Regimes, J. Atmos. Sci., 73, 2465–2484, 2016. a

Lee, S. and Kim, H.-K.: The dynamical relationship between subtropical and
eddy-driven jets, J. Atmos. Sci., 60, 1490–1503, 2003. a

Legras, B. and Ghil, M.: Persistent anomalies, blocking and variations in
atmospheric predictability, J. Atmos. Sci., 42, 433–471, 1985. a

Letellier, C., Aguirre, L., and Maquet, J.: How the choice of the observable
may influence the analysis of nonlinear dynamical systems, Commun. Nonlin. Sci. Numer. Simul., 11, 555–576, 2006. a

Lorenz, E. N.: Deterministic nonperiodic flow, J. Atmos. Sci., 20, 130–141, 1963. a

Lorenz, E. N.: Irregularity: A fundamental property of the atmosphere, Tellus A, 36, 98–110, 1984. a

Lorenz, E. N.: Dimension of weather and climate attractors, Nature, 353, 241–244, 1991. a

Lorenz, E. N.: Predictability: A problem partly solved, in: vol. 1, Seminar on Predictability, 4–8 September 1995, Shinfield Park, Reading, 1996. a

Lucarini, V., Faranda, D., Turchetti, G., and Vaienti, S.: Extreme value theory for singular measures, Chaos, 22, 023135, https://doi.org/10.1063/1.4718935, 2012. a

Madonna, E., Li, C., Grams, C. M., and Woollings, T.: The link between
eddy-driven jet variability and weather regimes in the North Atlantic-European sector, Q. J. Roy. Meteorol. Soc., 143, 2960–2972, 2017. a, b

McComb, W. D.: The Physics of Fluid Turbulence, edited by: McComb, W. D.,
Clarendon Press, Oxford, 572 pp., 1992. a

McWilliams, J. C., Flierl, G. R., Larichev, V. D., and Reznik, G. M.: Numerical studies of barotropic modons, Dynam. Atmos. Oceans, 5, 219–238, 1981. a

Messori, G., Caballero, R., and Faranda, D.: A dynamical systems approach to
studying midlatitude weather extremes, Geophys. Res. Lett., 44, 3346–3354, 2017. a

Mo, K. and Ghil, M.: Cluster analysis of multiple planetary flow regimes, J.
Geophys. Res.-Atmos., 93, 10927–10952, 1988. a

Nicolis, C. and Nicolis, G.: Is there a climatic attractor?, Nature, 311, 529–532, 1984. a

Penland, C. and Matrosova, L.: A balance condition for stochastic numerical
models with application to the El Nino-Southern Oscillation, J. Climate, 7, 1352–1372, 1994. a

Pickands III, J.: Statistical inference using extreme order statistics, Ann. Stat., 3, 119–131, 1975. a

Reiter, E. R. and Nania, A.: Jet-stream structure and clear-air turbulence (CAT), J. Appl. Meteorol., 3, 247–260, 1964. a

Röthlisberger, M., Pfahl, S., and Martius, O.: Regional-scale jet waviness modulates the occurrence of midlatitude weather extremes, Geophys. Res. Lett., 43, 10989–10997, https://doi.org/10.1002/2016GL07094, 2016. a, b

Sato, Y., Doan, T., Rasmussen, M., and Lamb, J. S.: Dynamical characterization of stochastic bifurcations in a random logistic map, arXiv:1811.03994, 2018. a

Schertzer, D., Lovejoy, S., Schmitt, F., Chigirinskaya, Y., and Marsan, D.:
Multifractal cascade dynamics and turbulent intermittency, Fractals, 5,
427–471, 1997. a

Screen, J. A. and Simmonds, I.: Amplified mid-latitude planetary waves favour
particular regional weather extremes, Nat. Clim. Change, 4, 704–709, 2014. a

Simmons, A., Wallace, J., and Branstator, G.: Barotropic wave propagation and
instability, and atmospheric teleconnection patterns, J. Atmos. Sci., 40,
1363–1392, 1983. a

Son, S.-W. and Lee, S.: The response of westerly jets to thermal driving in a
primitive equation model, J. Atmos. Sciences, 62, 3741–3757, 2005. a

Stommel, H.: Thermohaline convection with two stable regimes of flow, Tellus,
13, 224–230, 1961. a

Süveges, M.: Likelihood estimation of the extremal index, Extremes, 10,
41–55, 2007. a

Thomson, D.: Criteria for the selection of stochastic models of particle
trajectories in turbulent flows, J. Fluid Mech., 180, 529–556, 1987. a

Tibaldi, S., Buzzi, A., and Malguzzi, P.: Orographically induced cyclogenesis: Analysis of numerical experiments, Mon. Weather Rev., 108, 1302–1314, 1980. a

Tung, K. and Lindzen, R.: A theory of stationary long waves. I – A simple theory of blocking. II – Resonant Rossby waves in the presence of realistic vertical shears, Mon. Weather Rev., 107, 735–750, https://doi.org/10.1175/1520-0493(1979)107<0735:ATOSLW>2.0.CO;2, 1979. a

Weeks, E. R., Crocker, J. C., Levitt, A. C., Schofield, A., and Weitz, D. A.:
Three-dimensional direct imaging of structural relaxation near the colloidal
glass transition, Science, 287, 627–631, 2000. a

Williams, P. D. and Joshi, M. M.: Intensification of winter transatlantic
aviation turbulence in response to climate change, Nat. Clim. Change, 3,
644–648, 2013.
a

Williams, P. D., Read, P., and Haine, T.: Spontaneous generation and impact of inertia-gravity waves in a stratified, two-layer shear flow, Geophys. Res. Lett., 30, 2255, https://doi.org/10.1029/2003GL018498, 2003. a

Williams, P. D., Haine, T. W., and Read, P. L.: On the generation mechanisms of short-scale unbalanced modes in rotating two-layer flows with vertical shear, J. Fluid Mech., 528, 1–22, 2005. a

Woollings, T., Hannachi, A., and Hoskins, B.: Variability of the North Atlantic eddy-driven jet stream, Q. J. Roy. Meteorol. Soc., 136, 856–868, 2010. a

Wouters, J. and Lucarini, V.: Multi-level dynamical systems: Connecting the
Ruelle response theory and the Mori-Zwanzig approach, J. Stat. Phys., 151, 850–860, 2013. a, b

Yanagita, T. and Kaneko, K.: Coupled map lattice model for convection, Phys. Lett. A, 175, 415–420, 1993. a