Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

Journal metrics

  • IF value: 3.769 IF 3.769
  • IF 5-year value: 4.522 IF 5-year 4.522
  • CiteScore value: 4.14 CiteScore 4.14
  • SNIP value: 1.170 SNIP 1.170
  • SJR value: 2.253 SJR 2.253
  • IPP value: 3.86 IPP 3.86
  • h5-index value: 26 h5-index 26
  • Scimago H index value: 22 Scimago H index 22
Volume 10, issue 1
Earth Syst. Dynam., 10, 1-7, 2019
https://doi.org/10.5194/esd-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

Special issue: ESD Ideas

Earth Syst. Dynam., 10, 1-7, 2019
https://doi.org/10.5194/esd-10-1-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.

ESD Ideas 04 Jan 2019

ESD Ideas | 04 Jan 2019

ESD Ideas: Photoelectrochemical carbon removal as negative emission technology

Matthias M. May1,2 and Kira Rehfeld3,4 Matthias M. May and Kira Rehfeld
  • 1Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
  • 2Institute for Solar Fuels, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
  • 3British Antarctic Survey, High Cross, Madingley Road, CB3 0ET, Cambridge, UK
  • 4Institute of Environmental Physics, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer Feld 229, 69120 Heidelberg, Germany

Abstract. The pace of the transition to a low-carbon economy – especially in the fuels sector – is not high enough to achieve the 2°C target limit for global warming by only cutting emissions. Most political roadmaps to tackle global warming implicitly rely on the timely availability of mature negative emission technologies, which actively invest energy to remove CO2 from the atmosphere and store it permanently. The models used as a basis for decarbonization policies typically assume an implementation of such large-scale negative emission technologies starting around the year 2030, ramped up to cause net negative emissions in the second half of the century and balancing earlier CO2 release. On average, a contribution of −10GtCO2yr−1 is expected by 2050 (Anderson and Peters, 2016). A viable approach for negative emissions should (i) rely on a scalable and sustainable source of energy (solar), (ii) result in a safely storable product, (iii) be highly efficient in terms of water and energy use, to reduce the required land area and competition with water and food demands of a growing world population, and (iv) feature large-scale feasibility and affordability.

Publications Copernicus
Special issue
Download
Short summary
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative emission technologies are therefore an important basis for climate policy scenarios. We show that photoelectrochemical CO2 reduction might be a viable, high-efficiency alternative to biomass-based approaches, which reduce competition for arable land. To develop them, chemical reactions have to be optimized for CO2 removal, which deviates from energetic efficiency optimization in solar fuel applications.
Current CO2 emission rates are incompatible with the 2 °C target for global warming. Negative...
Citation
Share