Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.589 IF 4.589
  • IF 5-year<br/> value: 3.696 IF 5-year
    3.696
  • CiteScore<br/> value: 3.94 CiteScore
    3.94
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 8, 337-355, 2017
http://www.earth-syst-dynam.net/8/337/2017/
doi:10.5194/esd-8-337-2017
© Author(s) 2017. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
17 May 2017
Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus Basin
Shabeh Hasson1,2, Jürgen Böhner1, and Valerio Lucarini3,4,1 1CEN, Centre for Earth System Research and Sustainability, University of Hamburg, Hamburg, Germany
2Department of Space Sciences, Institute of Space Technology, Islamabad, Pakistan
3Department of Mathematics and Statistics, University of Reading, Reading, UK
4Walker Institute for Climate System Research, University of Reading, Reading, UK
Abstract. Largely depending on the meltwater from the Hindukush–Karakoram–Himalaya, withdrawals from the upper Indus Basin (UIB) contribute half of the surface water availability in Pakistan, indispensable for agricultural production systems, industrial and domestic use, and hydropower generation. Despite such importance, a comprehensive assessment of prevailing state of relevant climatic variables determining the water availability is largely missing. Against this background, this study assesses the trends in maximum, minimum and mean temperatures, diurnal temperature range and precipitation from 18 stations (1250–4500 m a.s.l.) for their overlapping period of record (1995–2012) and, separately, from six stations of their long-term record (1961–2012). For this, a Mann–Kendall test on serially independent time series is applied to detect the existence of a trend, while its true slope is estimated using the Sen's slope method. Further, locally identified climatic trends are statistically assessed for their spatial-scale significance within 10 identified subregions of the UIB, and the spatially (field-) significant climatic trends are then qualitatively compared with the trends in discharge out of corresponding subregions. Over the recent period (1995–2012), we find warming and drying of spring (field-significant in March) and increasing early melt season discharge from most of the subregions, likely due to a rapid snowmelt. In stark contrast, most of the subregions feature a field-significant cooling within the monsoon period (particularly in July and September), which coincides well with the main glacier melt season. Hence, a decreasing or weakly increasing discharge is observed from the corresponding subregions during mid- to late melt season (particularly in July). Such tendencies, being largely consistent with the long-term trends (1961–2012), most likely indicate dominance of the nival but suppression of the glacial melt regime, altering overall hydrology of the UIB in future. These findings, though constrained by sparse and short observations, largely contribute in understanding the UIB melt runoff dynamics and address the hydroclimatic explanation of the Karakoram Anomaly.

Citation: Hasson, S., Böhner, J., and Lucarini, V.: Prevailing climatic trends and runoff response from Hindukush–Karakoram–Himalaya, upper Indus Basin, Earth Syst. Dynam., 8, 337-355, doi:10.5194/esd-8-337-2017, 2017.
Publications Copernicus
Download
Short summary
A first comprehensive and systematic hydroclimatic trend analysis for the upper Indus Basin suggests warming and drying of spring and rising early melt-season discharge over 1995–2012 period. In contrast, cooling and falling or weakly rising discharge is found within summer monsoon period that coincides well with main glacier melt season. Such seasonally distinct changes, indicating dominance of snow but suppression of glacial melt regime, address hydroclimatic explanation of Karakoram Anomaly.
A first comprehensive and systematic hydroclimatic trend analysis for the upper Indus Basin...
Share