Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.589 IF 4.589
  • IF 5-year<br/> value: 3.696 IF 5-year
  • CiteScore<br/> value: 3.94 CiteScore
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 6, 109-124, 2015
© Author(s) 2015. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
13 Mar 2015
A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau
J. Curio1, F. Maussion1,2, and D. Scherer1 1Chair of Climatology, Technische Universität Berlin, Berlin, Germany
2Institute of Meteorology and Geophysics, University of Innsbruck, Innsbruck, Austria
Abstract. The Tibetan Plateau (TP) plays a key role in the water cycle of high Asia and its downstream regions. The respective influence of the Indian and East Asian summer monsoon on TP precipitation and regional water resources, together with the detection of moisture transport pathways and source regions are the subject of recent research. In this study, we present a 12-year high-resolution climatology of the atmospheric water transport (AWT) over and towards the TP using a new data set, the High Asia Refined analysis (HAR), which better represents the complex topography of the TP and surrounding high mountain ranges than coarse-resolution data sets. We focus on spatiotemporal patterns, vertical distribution and transport through the TP boundaries. The results show that the mid-latitude westerlies have a higher share in summertime AWT over the TP than assumed so far. Water vapour (WV) transport constitutes the main part, whereby transport of water as cloud particles (CP) also plays a role in winter in the Karakoram and western Himalayan regions. High mountain valleys in the Himalayas facilitate AWT from the south, whereas the high mountain regions inhibit AWT to a large extent and limit the influence of the Indian summer monsoon. No transport from the East Asian monsoon to the TP could be detected. Our results show that 36.8 ± 6.3% of the atmospheric moisture needed for precipitation comes from outside the TP, while the remaining 63.2% is provided by local moisture recycling.

Citation: Curio, J., Maussion, F., and Scherer, D.: A 12-year high-resolution climatology of atmospheric water transport over the Tibetan Plateau, Earth Syst. Dynam., 6, 109-124, doi:10.5194/esd-6-109-2015, 2015.
Publications Copernicus