Journal cover Journal topic
Earth System Dynamics An interactive open-access journal of the European Geosciences Union

Journal metrics

  • IF value: 4.589 IF 4.589
  • IF 5-year<br/> value: 3.696 IF 5-year
  • CiteScore<br/> value: 3.94 CiteScore
  • SNIP value: 0.995 SNIP 0.995
  • SJR value: 2.742 SJR 2.742
  • IPP value: 3.679 IPP 3.679
  • h5-index value: 21 h5-index 21
Earth Syst. Dynam., 4, 11-29, 2013
© Author(s) 2013. This work is distributed
under the Creative Commons Attribution 3.0 License.
Research article
23 Jan 2013
A scaling approach to project regional sea level rise and its uncertainties
M. Perrette1, F. Landerer2, R. Riva3, K. Frieler1, and M. Meinshausen1 1Potsdam Institute for Climate Impact Research (PIK) Telegraphenberg A26, 14412 Potsdam, Germany
2Jet Propulsion Laboratory/California Institute of Technology, Pasadena, CA, USA
3Dept. Geoscience and Remote Sensing and TU Delft Climate Institute, Delft University of Technology, Delft, The Netherlands
Abstract. Climate change causes global mean sea level to rise due to thermal expansion of seawater and loss of land ice from mountain glaciers, ice caps and ice sheets. Locally, sea level can strongly deviate from the global mean rise due to changes in wind and ocean currents. In addition, gravitational adjustments redistribute seawater away from shrinking ice masses. However, the land ice contribution to sea level rise (SLR) remains very challenging to model, and comprehensive regional sea level projections, which include appropriate gravitational adjustments, are still a nascent field (Katsman et al., 2011; Slangen et al., 2011). Here, we present an alternative approach to derive regional sea level changes for a range of emission and land ice melt scenarios, combining probabilistic forecasts of a simple climate model (MAGICC6) with the new CMIP5 general circulation models.

The contribution from ice sheets varies considerably depending on the assumptions for the ice sheet projections, and thus represents sizeable uncertainties for future sea level rise. However, several consistent and robust patterns emerge from our analysis: at low latitudes, especially in the Indian Ocean and Western Pacific, sea level will likely rise more than the global mean (mostly by 10–20%). Around the northeastern Atlantic and the northeastern Pacific coasts, sea level will rise less than the global average or, in some rare cases, even fall. In the northwestern Atlantic, along the American coast, a strong dynamic sea level rise is counteracted by gravitational depression due to Greenland ice melt; whether sea level will be above- or below-average will depend on the relative contribution of these two factors. Our regional sea level projections and the diagnosed uncertainties provide an improved basis for coastal impact analysis and infrastructure planning for adaptation to climate change.

Citation: Perrette, M., Landerer, F., Riva, R., Frieler, K., and Meinshausen, M.: A scaling approach to project regional sea level rise and its uncertainties, Earth Syst. Dynam., 4, 11-29, doi:10.5194/esd-4-11-2013, 2013.
Publications Copernicus