Journal Metrics

  • IF value: 2.771 IF 2.771
  • SNIP value: 1.216 SNIP 1.216
  • IPP value: 2.326 IPP 2.326
  • SJR value: 1.371 SJR 1.371
  • h5-index value: 9 h5-index 9
Earth Syst. Dynam., 3, 189-197, 2012
www.earth-syst-dynam.net/3/189/2012/
doi:10.5194/esd-3-189-2012
© Author(s) 2012. This work is distributed
under the Creative Commons Attribution 3.0 License.
Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model
M. Mengel1,2, A. Levermann1,2, C.-F. Schleussner1,2, and A. Born3,4
1Potsdam Institute for Climate Impact Research, Telegrafenberg A62, 14473 Potsdam, Germany
2Physics Institute, Potsdam University, Potsdam, Germany
3Climate and Environmental Physics, Physics Institute, University of Bern, Bern, Switzerland
4Oeschger Centre for Climate Change Research, Bern, Switzerland

Abstract. Direct observations, satellite measurements and paleo records reveal strong variability in the Atlantic subpolar gyre on various time scales. Here we show that variations of comparable amplitude can only be simulated in a coupled climate model in the proximity of a dynamical threshold. The threshold and the associated dynamic response is due to a positive feedback involving increased salt transport in the subpolar gyre and enhanced deep convection in its centre. A series of sensitivity experiments is performed with a coarse resolution ocean general circulation model coupled to a statistical-dynamical atmosphere model which in itself does not produce atmospheric variability. To simulate the impact of atmospheric variability, the model system is perturbed with freshwater forcing of varying, but small amplitude and multi-decadal to centennial periodicities and observational variations in wind stress. While both freshwater and wind-stress-forcing have a small direct effect on the strength of the subpolar gyre, the magnitude of the gyre's response is strongly increased in the vicinity of the threshold. Our results indicate that baroclinic self-amplification in the North Atlantic ocean can play an important role in presently observed SPG variability and thereby North Atlantic climate variability on multi-decadal scales.

Citation: Mengel, M., Levermann, A., Schleussner, C.-F., and Born, A.: Enhanced Atlantic subpolar gyre variability through baroclinic threshold in a coarse resolution model, Earth Syst. Dynam., 3, 189-197, doi:10.5194/esd-3-189-2012, 2012.
 
Search ESD
Final Revised Paper
PDF XML
Citation
Discussion Paper
Share