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Abstract. We use statistical methods for nonstationary time processes involved in the greenhouse effect, whereby some
series to test the anthropogenic interpretation of globalof the longwave radiation emitted by Earth is re-absorbed by
warming (AGW), according to which an increase in atmo- some of the molecules that make up the atmosphere, such
spheric greenhouse gas concentrations raised global tempeas (in decreasing order of importance): water vapor, car-
ature in the 20th century. Specifically, the methodology ofbon dioxide, methane and nitrous oxide (IPCC, 2007). Even
polynomial cointegration is used to test AGW since dur- though the most important greenhouse gas is water vapor, the
ing the observation period (1880-2007) global temperaturedynamics of its flux in and out of the atmosphere by evapo-
and solar irradiance are stationary in 1st differences, whereasation, condensation and subsequent precipitation are not un-
greenhouse gas and aerosol forcings are stationary in 2nd difierstood well enough to be explicitly and exactly quantified.
ferences. We show that although these anthropogenic forc- While much of the scientific research into the causes of
ings share a common stochastic trend, this trend is empiriglobal warming has been carried out using calibrated gen-
cally independent of the stochastic trend in temperature anéral circulation models (GCMs), since 1997 a new branch
solar irradiance. Therefore, greenhouse gas forcing, aerosolsf scientific inquiry has developed in which observations of
solar irradiance and global temperature are not polynomiallyclimate change are tested statistically by the method of coin-
cointegrated, and the perceived relationship between thesiegration (Kaufmann and Stern, 1997, 2002; Stern and Kauf-
variables is a spurious regression phenomenon. On the othenann, 1999, 2000; Kaufmann et al., 2006a,b; Liu and Ro-
hand, we find that greenhouse gas forcings might have had driguez, 2005; Mills, 2009). The method of cointegration,
temporary effect on global temperature. developed in the closing decades of the 20th century, is in-
tended to test for the spurious regression phenomena in non-
stationary time series (Phillips, 1986; Engle and Granger,
1987). Non-stationarity arises when the sample moments of
1 Introduction a time series (mean, variance, covariance) depend on time.
Regression relationships are spuribughen unrelated non-
Considering the complexity and variety of the processes thattationary time series appear to be significantly correlated be-
affect Earth’s climate, it is not surprising that a completely cause they happen to have time trends.
satisfactory and accepted account of all the changes that oc- The method of cointegration has been successful in de-
curred in the last century (e.g. temperature changes in th@acting spurious relationships in economic time series’data
vast area of the Tropics, the balance of £@put into the
atmosphere, changes in aerosol concentration and size and 1“Spurious regression” was originally discovered by Yule (1897).
changes in solar radiation) has yet to be reached (IPCC, AR4, 2For example, Enders (1988) in the case of Purchasing
2007). Of particular interest to the present study are thoséower Parity theory, Johansen and Juselius (1998) in the case
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174 M. Beenstock et al.: Polynomial cointegration tests of anthropogenic impact on global warming

Indeed, cointegration has become the standard econometriradiance, water vapor (1880-2003) and global mean tem-
tool for testing hypotheses with nonstationary data (Maddalaperature (sea and land combined 1880-2007). These widely
2001; Greene, 2012). As noted, climatologists too have usedsed secondary data are obtained from NASA-GISS (Hansen
cointegration to analyse nonstationary climate data (Kauf-et al., 1999, 2001). Details of these data may be found in the
mann and Stern, 1997). Cointegration theory is based on th®ata Appendix.
simple notion that time series might be highly correlated even We carry out robustness checks using new reconstructions
though there is no causal relation between them. For the refor solar irradiance from Lean and Rind (2009), for globally
lation to be genuine, the residuals from a regression betweeaveraged temperature from Mann et al. (2008) and for global
these time series must be stationary, in which case the tim&and surface temperature (1850-2007) from the Berkeley
series are “cointegrated”. Since stationary residuals meankarth Surface Temperature Study.
revert to zero, there must be a genuine long-term relationship Key time series are shown in Fig. 1 where panels a and b
between the series, which move together over time becausehow the radiative forcings for three major GHGs, while
they share a common trend. If on the other hand, the residpanel ¢ shows solar irradiance and global temperature. All
uals are nonstationary, the residuals do not mean-revert tthese variables display positive time trends. However, the
zero, the time series do not share a common trend, and théme trends in panels a and b appear more nonlinear than their
relationship between them is spurious because the time sesounterparts in panel c. Indeed, statistical tests reported be-
ries are not cointegrated. Indeed, tRé from a regression low reveal that the trends in panel ¢ are linear, whereas the
between nonstationary time series may be as high as 0.9%ends in panels a and b are quadratic. The trend in solar irra-
yet the relation may nonetheless be spurious. diance weakened since 1970, while the trend in temperature
The method of cointegration originally developed by En- weakened temporarily in the 1950s and 1960s.
gle and Granger (1987) assumes that the nonstationary data The statistical analysis of nonstationary time series, such
are stationary in changes, or first-differences. For exampleas those in Fig. 1, has two natural stages. The first consists
temperature might be increasing over time, and is there-of unit root tests in which the data are classified by their
fore nonstationary, but the change in temperature is stationerder and type of non-stationarity. If the data are nonsta-
ary. In the 1990s cointegration theory was extended to thdionary, sample moments such as means, variances and co-
case in which some of the variables have to be differencediariances depend upon when the data are sampled, in which
twice (i.e. the time series of the change in the change) beevent least squares and maximum likelihood estimates of pa-
fore they become stationary. This extension is commonlyrameters may be spurious. In the second stage, these nonsta-
known as polynomial cointegration. Previous analyses of thetionary data are used to test hypotheses using the method of
non-stationarity of climatic time series (e.g. Kaufmann and cointegration, which is designed to distinguish between gen-
Stern, 2002; Kaufmann et al., 2006a; Stern and Kaufmannuine and spurious relationships between time series. Since
1999) have demonstrated that global temperature and soldahese methods may be unfamiliar to readerEafth System
irradiance are stationary in first differences, whereas greenbynamicswe provide an overview of key concepts and tests.
house gases (GHG, hereafter) are stationary in second differ-
ences. In the present study we apply the method of polyno2.1 Unit root tests
mial cointegration to test the hypothesis that global warming
since 1850 was caused by various anthropogenic phenonmA time series is (weakly) stationary if its sample moments
ena. Our results show that GHG forcings and other anthro{means, variances and covariances) do not depend on when
pogenic phenomena do not polynomially cointegrate withthey are measured. By definition, a time series is nonstation-
global temperature and solar irradiance. Therefore, despitary or integrated to ordet, I (d) for short, if itsd-th differ-
the high correlation between anthropogenic forcings, solarence is stationary but its— 1-th difference is not. We quan-
irradiance and global temperature, AGW is not statisticallytify the order of the data’s non-stationarity using a variety
significant. The perceived statistical relation between tem-of unit root tests. The most well-known is the Dickey—Fuller
perature and anthropogenic forcings is therefore a spuriou§DF) test statistic (Dickey and Fuller, 1981), which is based
regression phenomenon. on the null hypothesis that the variable is nonstationary, and
d=1. The KPSS test statistic (Kwiatkowski et al., 1992) is
based on the null hypothesis tliat 0, in which case the vari-
2 Data and methods able is stationary. The DF and KPSS tests assume/tisan
integer equal to 1 and 0, respectively. In fact a variable is non-
stationary ifd > 1/2 (Granger and Joyeaux, 1980). Rejection
of the KPSS null means therefore thatloes not equal zero,
but the variable could still be stationary. Rejection of the DF
Hull means that! < 1, but it would still be nonstationary if
of the influential Keynesian IS-LM model, and Hendry and 1/2<d <1. Therefore, the two tests are not mirror images
Ericsson (1991) on the demand for money. of each other. In any case, failure to reject a hypothesis is

We use annual data (1850-2007) on greenhouse gas, (CO
CH4 and NO) concentrations and forcings, as well as on
forcings for aerosols (black carbon, reflective tropospheric
aerosols). We also use annual data (1880-2007) on sol
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not logically equivalent to establishing that its antithesis is2.2 Cointegration tests
fals€’. Given the low power of these tests there is a case for
using both types of test (Maddala and Kim, 1998). GewekeCointegration tests typically refer to hypothesized steady-
and Porter-Hudak (1983) suggested an estimator for d as state relationships in the data. This feature is particularly use-
fraction, which we use below. For an application to climate ful because it means that it is unnecessary to specify aux-
data see Mills (2007). iliary hypotheses regarding dynamic convergence processes
If d =1 the variable is “difference stationary”. If deviations towards steady states. Although this methodological simpli-
of the variable from a deterministic linear trend are station-fication applies asymptotically, it has a number of impor-
ary, the variable is “trend stationary”. In the latter case ran-tant advantages. First, steady states may be inherently more
dom shocks to the variable are expected to dissipate oveinteresting than adjustment paths. In the case of AGW the
time as the trend is re-established, and the time trend isnain interest is the long-term anthropogenic impact on cli-
therefore deterministic. In the former case, random shocksnate rather than how it diffuses over time. Secondly, tests of
are expected to persist over time and the trend is thereforéhe steady state are robust asymptotically with respect to un-
stochastic. Critical values for the DF and KPSS statistics ar&known paths of adjustment. Often, steady state theory is more
more stringent in the former case because the trend statiordeveloped than its ancillary theory of adjustment. These ad-
ary model involves the estimation of an additional parameteljustment theories may be nonlinear, as they commonly are in
(time trend). In the event that both models appear to be conGCMs, but cointegration does not require the specification
sistent with the data, Dickey and Fuller (1981) have proposedf these details. Third, estimates of long-term cointegrated
a test that distinguishes between trend stationarity and differrelationship are “super-consistent”; the relationship between
ence stationarity. If a variable is trend stationary, it obviously temperature and forcing is asymptotically identified even if
cannot be stationary. there happens to be reverse causality from temperature to
The DF and KPSS statistics assume that the residuals iforcing.
the data generating process are serially independent. If they If the steady state is linear (i.e. the assumed relationship
are not, these statistics have to be corrected. The augmentdxtween the variables in the regression model is linear) then
DF statistic (ADF, see Said and Dickey, 1984) assumes thalinear cointegration theory is sufficient to test restrictions
the serial correlation is induced by dynamics in the data genfegarding the steady state. If the steady state is nonlinear
erating process (DGP). Another correction for the DF statis-then nonlinear cointegration theory may be used to test rel-
ticis the DF-GLS statistic (i.e. DF statistic estimated by Gen-evant restrictions about the steady state (Choi and Saikko-
eralised Least Squares see Elliott et al., 1996), which asnen, 2010). Nonlinear cointegration theory is naturally more
sumes that serial correlation in the DGP is inherent and iscomplex than its linear counterpart. GCMs are nonlinear be-
estimated by generalised least squares (GLS). The Phillipseause they embody nonlinear terms and adjustment processes
Perron (PP) statistic (Phillips and Perron, 1988) is a robustather than nonlinear steady states. Therefore, for the most
estimate of the DF statistic, which corrects its standard devipart we focus on linear cointegration tests. However, we also
ation for serial correlation in the DGP. A similar correction use nonlinear cointegration theory to test AGW in nonlinear
method is also used by KPSS. Unfortunately, there is no coneontexts.
sensus on the best way to handle this serial correlation prob- Several different cointegration methodologies are avail-
lem although the PP statistic is reckoned to be inferior (Mad-able. The original methodology proposed by Engle and
dala and Kim, 1998; Davidson and MacKinnon, 2009, chap-Granger (1987), based on ordinary least squares (OLS), is
ter 14). Our own preference is to augment the ADF test untildesigned for “asymptotic samples” in which the steady state
its residuals are serially independent according to a lagrangds repeatedly observable. Typically, this requires long time
multiplier test statistic. series in terms of calendar time. In our case we use annual
Stationary time series which contain structural breaks maydata from 1850 or 1880. If the adjustment process of temper-
appear nonstationary because their mean varies over timeture with respect to forcings is very protracted this sample
The same applies to trend stationary time series which conmay be too short to test hypotheses about steady states. Engle
tain structural breaks. For example, Kaufmann et al. (2010yand Yoo (1991) have suggested a test to determine whether
show that global temperature is not trend stationary in theestimates based on the Engle-Granger methodology are sub-
presence of structural breaks, and that it is difference staject to finite sample bias. We use this test to show that the
tionary. See Perron and Vogelsang (1992) regarding DF testsample is sufficiently long.
in the presence of structural breaks and Lee and Strazi- Other cointegration methodologies have been proposed
cich (2001) for KPSS tests in the presence of structuralfor non-asymptotic samples in which the steady state may
breaks. be concealed by short-term adjustment processes in the
data. These include the methodology of Johansen (1988),
the dynamic ordinary least squares (DOLS) methodology of
3Just as failure to establish guilt is not equivalent to establishingStock and Watson (1993) and the error correction (ECM)
innocence. methodology (Ericsson and MacKinnon, 2002). All these
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methodologies filter out (in different ways) short-term dy- Johansen’s method takes account of feedback between the
namics in the data that may conceal the hypothesized steadyovariates. However, this advantage does not apply in our
states. In all of these methodologies the null hypothesiscase since for physical reasons there is no feedback between
is “no cointegration, or spurious regression relationships”.solar irradiance and greenhouse gas forcing, nor does temper-
Shin (1994) has extended the KPSS methodology (see abova}ure feedback onto solar irradiance and greenhouse gas forc-
to test the null hypothesig =0 for the model residuals, in ing. Fourth, as noted by Davidson and MacKinnon (2009,

which case the model is cointegrated. p. 617), Johansen’s methodology is more prone to finite sam-
_ _ _ ple bias than its least squares alternatives. Therefore, if we
2.3 Polynomial cointegration suspect that our sample is insufficiently long, it is prefer-

able to use least squares methods. Fifth, as noted by Mad-
In standard cointegration tests the variables must be differgala and Kim (1998, p. 203), the Engle-Granger procedure
ence stationary in which case all the variables/a®. Just  ypon which Haldrup’s method is based is statistically under-
as/(0) and (1) variables cannot be cointegrated, 5d)  powered, i.e. it tends to accept false negative results by more
and/(2) variables do not cointegrate. An exception arises inthan it should. In the present context this means that our poly-
the case of polynomial cointegration. Therefore, if some ofnomial cointegration methodology is too “soft” with respect
the variables happen to H&2) the null hypothesis of AGW 15 AGW. Since a positive result might have been incorrect,
may be tested using polynomial cointegration. In the presentejection of AGW is in some sense against the odds, and
context this happens when tii€2) variables, which are an-  nerefore more convincing. A final reason is that previous
thropogenic, are cointegrated1). We refer below to this  yegearchers have used least squares methods. Therefore, Hal-
1(1) variable as the “anthropogenic anomaly”. If the latter gryp's method enables us to reconstruct incorrect inferences
is cointegrated with temperature and solar irradiance, whichp, previous least squares studies which ignored the important
are both/ (1) variables, the variables are polynomially coin- fg¢t that greenhouse gas forcing/i2).
tegrated, and AGW would be corroborated. Parameters estimated from stationary time series are root-
There are also different methodologies for polyno- T consistent, wher@ denotes the number of observations.
mial cointegration, which have been reviewed by Mad-f the data arel (1), have stochastic trends and are coin-
dala and Kim (1998). Haldrup (1994) extended the Engle-tegrated, the parameter estimates #r¥2-consistent, or
Granger methodology to polynomial cointegration, as did«syper-consistenf: If the data ard (2) and are polynomially
Johansen (1995) for his methodology, and Stock and Watrgintegrated the parameter estimatesZ#&-consistent, or
son (1993) for their methodology. There are conceptual dif-«gyper-super consisterft’ The higher the order of consis-
ferences between these methodologies. Haldrup’s methodo{ency, the faster the parameter estimates converge in proba-
ogy hypothesizes that the(2) variables may “cointegrate pjjity to their true values. The super-super consistency prop-
down” to an/ (1) variable, i.e. they share a common stochas-erty of polynomial cointegration means, in theory, that one
tic trend. Johansen’s methodology hypotheses the existeng@arns from 150 yr of climate data what would have required
of a deterministic trend among thig2) variable4. In the at least a millennium of stationary data.
context of greenhouse gas forcing this means that there is an \ye do not report-statistics for the parameter estimates in
autonomous time trend causing forcing to diverge over time he cointegrating vector because it is well-known that when
We prefer Haldrup’s methodology over Johansen’s for sevthe data are nonstationary the parameter estimates based on
eral reasons. First, there is no physical justification for an aup g typically have non-standard distributions. This is partic-
tonomous time trends in greenhouse gas forcing. For examg|arly the case when variables such as temperature and green-
ple, the anthropogenic component of £forcing depends  hoyse gas forcing may be dynamically dependent. Since
on world consumption of hydrocarbons, which has a stochastests and chi-squared tests are invalid, we test rival hypothe-
tic trend rather than a deterministic trend. Therefore,CO ggg by carrying out nested cointegration tests. For example,
forcing should not have a deterministic trend (as confirmedsuppose that temperature, solar irradiance and greenhouse
by our unit root tests). Second, Johansen’s method is less ro-
bust than least squares methods (Maddala and Kim, 1998FIML) estimates. The obtained parameter estimates may not have
p. 173) due to its greater parametri€itOn the other hand, any meaning, and since we do not know their “true” properties, in-
ference is likely to be hazardous.” We might add that the Johansen
4In reference to Johansern's2) estimator Juselius (2007) notes method is based on concentrated ML, which assumes that short-run
(p. 315) that, “In particular, this means that we need to allow for dynamics in the data may be concentrated out independently of their
trend-stationary relations as a starting hypothesis.” long-run behavior. In short, the robustness of Johansen’s method is
5Juselius (2007) writes (p. 55) in relation to the assumption thatweakened by its numerous assumptions.
the residuals in Johansen’s method must be multivariate normal, “If 6|f, instead, the data arB(1) because they are driftless random
they do not pass these tests, for example, because they are autoctvalks then the parameter estimates are rodt €onsistent. See
related or heteroscedastic, or because the distribution is skewed dvladdala and Kim (1998), p. 59.
leptokurtic, then the estimates may no longer have optimal proper- ’In the absence of drift the parameter estimates would e
ties and cannot be considered full-information maximum likelihood consistent as in Haldrup (1994).
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gas forcings seem to be cointegrated. To test whether cointef the residual error, u, is stationafy(0). If the residuals are
gration arises because of the specification of greenhouse gamnstationary the estimated model is spurious. Equation (5)
forcings, we omit these forcings from the model (jointly or is assumed to be linear, but it may also be specified to be
severally) and test whether temperature and solar irradianceonlinear.

are still cointegrated. If they are not cointegrated, we confirm

that greenhouse gas forcings should be specified and AGV¥-5 Dependent and independent forcings

is confirmed. In the opposite case the model is cointegrated

without greenhouse forcings, AGW is rejected and tempera-We distinguish between dependent or endogenous forcing

ture in the steady state depends entirely on solar irradiance.2nd independent or exogenous forcing, denoted’yand
Fg, respectively, wheré' = Fa + Fg. Dependent forcing de-

2.4 Stochastic energy balance models (SEBM) pends on global temperature and perhaps other forcing, while
independent forcing is also driven by factors other than those

We use the stochastic energy balance model (SEBM) to moeonsidered here. For example, greenhouse gas and aerosol

tivate our cointegration tests. SEBM (North et al., 1981) is forcings are independent because they do not depend on tem-

written as perature. Solar irradiance is obviously independent because
what happens to the sun is independent of what happens on
AT, ; :
C— = -A,_1+ F, +¢ (1) earth. Water vapor forcing on the other hand is dependent
At because it depends on temperature.
where T here denotes temperaturg, denotes forcinge Suppose that dependent forcings are linearly related in the

denotes a stochastic iid (identically and independently disdong run to their independent counterparts and global tem-

tributed) component, subscriptienotes discrete time at the perature as follows:

end of the period, andél/C is the rate at which temperature

converges to its steady state. Normalizig to unity, the For = Far + 1Ty + o )

general solution to Eq. (1) fdf is wherer denotes the effect of independent forcing on depen-
dent forcing,u denotes the effect of temperature on depen-

?) dent forcing andv denotes a stationary error. Equation (6)
states that dependent forcings are cointegrated with inde-
pendent forcings and temperature. Substituting Eq. (6) into

where O<p=1-1/C <1 and« is an arbitrary constant Eq. (4) gives

reflecting initial conditions. Since < 1 the final term in

1< .
=z ; P (Fri + er—i) + ko'

Eq. (2) tends zero. Suppose forcing is a random walk with?r = Yo + ¥1Far + v )

drift: where:

AF = ¢+ f, @) g ¥ gy opitTo, _Petu g
1-Bun’ 1B’ ' 1-Bu

where f is a random variable which is identically and inde-

pendently distributed (iid). Substituting Eq. (3) into Eq. (2) Equation (7) states that temperature varies directly with in-

dependent forcing. However, the coefficieht reflects the

for Fi—; gives direct effect of forcing g) and the indirect effect of 5 and
T, =a+ BF + u; temperature througlts. Typically, ¥1 > 8 becauser >0
o 1 andgu < 1, i.e. the total long-run effect of independent forc-
o= _C(l _ p)z; B= cl—p) ing is greater than it; direct effect. Sineeandu are station-
p . ary so musb be stationary.
U = 1 S pleni — 1 > i (4) What is important for our purposes is that cointegration
C = A= tests do not require data on dependent forcing sifice 0

when 8 =0. Therefore, dependent variables, such as water
S'?/'apor and ocean heat, do not in principle affect cointegration

tests. This conclusion is consistent with Stern (2006) who

shows that cointegration tests of the relationship between

temperature and forcing do not depend on the relationship
5) between temperature and ocean heat. If Eq. (6) is cointe-

grated, so must Eq. (4) be cointegrated. If, however, Eq. (6)

wheres denotes solar irradiancé, denotes greenhouse gas IS not cointegrated because= . =0 (ocean heat and water
forcing, A denotes aerosols and theoefficients are param- vapor do not depend in the long-run on temperature and solar
eters to be estimated. SEBM predicts that the steady-statéradiance) Eq. (4) may still be cointegrated, becafise s
parameters in Eq. (5) are positive. The model is cointegratedn EQ. (7).

Equation (4) decomposes temperature into a stationary,
rially correlated component} and a nonstationary compo-
nent, F. Finally, we disaggregate forcing{ into its compo-
nent parts:

T; =05+,BsSt+ﬂth_,3aAt+uta
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o6 properties of greenhouse gas forcings (panels a and b) are

-0.2 .. . . .

1880 1900 1920 1940 1960 1980 2000 visibly different to those for temperature and solar irradiance
(panel c). In panels a and b there is evidence of acceleration,
whereas in panel c the two time series appear more stable.
Fig. 1. Time series of the changes that occurred in several variable$n Fig. 2 we plot rfCQ in first differences, which confirms
that affect or represent climate changes during the 20th centurypy eye that rfCQis not/ (1), particularly since 1940. Similar
(2) Radiative forcings (f in units of W m?) during 1880 to 2007 figures are available for other greenhouse gas forcings. In this
of CHy (methane) and C®(carbon d"?x'de)(b) same period as  gection we establish the important result that whereas the first
n panel a b.Ut for N'”S us-Oxide (0); (c) solar |rrad|ancg (eft  jitferences of temperature and solar irradiance are trend free,
ordinate, units of Wm<) and annual global temperature (right or- . . .

. . . the first differences of the greenhouse gas forcings are not.
dinate, units oPC) during 1880-2003. L . . . .
This is consistent with our central claim that anthropogenic
forcings arel (2), whereas temperature and solar irradiance

Although they are not of direct importance here, the pa-aref(l). . _ .
rameters of Eq. (6) may be estimated if data are available on What we see informally is born out by the formal statis-
dependent forcings. However, the estimates @nd ;. may tical tests for the_va_LrlabIes in Table 1. Although the K_PSS
not be uniquely identified since according to Eq. (4) there@nd DF-type statistics (ADF, PP and DF-GLS) test differ-
is reverse causality from dependent forcing to temperature®nt null hypotheses, we successively increase d until they
Since consistent estimate gfrequire consistent estimates concur. If they concur whed =1, we classify the variable
of = and . as well as consistent estimatesiof, 8 is not ~ as/ (1), or difference stationary. For _the anthropogenic vari-
identified. What is required for identification is a variable @bles concurrence occurs whenr 2. Since the DF-type tests
that directly affects dependent forcing&s), but which does ~ @nd the KPSS tests reject that these variableg @nebut do
not directly affect temperature. Nevertheless, below we re 0t reject that they aré(2), there is no dilemma here. Mat-
port some empirical estimates of Eq. (6). ters might have been dlfferent if according to the .DF—type

Finally, Fa may be decomposed intq1) and/ (2) com- tests these anthropogenic variables&® but according to
ponents.Fa must bel (2) if at least one of its components is KPSS they ard (2).

1(2). In the next section we show that although solar irradi- _ The required number of augmentations for ADF is moot.
ance isl (1), anthropogenic forcings a&2). The frequently used Schwert criterion uses a standard for-

mula based solely on the number of observations, which
is inefficient because it may waste degrees of freedom. As
mentioned, we prefer instead to augment the ADF test until
its residuals become serially independent according to a la-
grange multiplier (LM) test. In most cases 4 augmentations

Year
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Table 1. Stationarity tests for forcings and temperature.

Data d Trend ADF DF-GLS Phillips- KPSS  Estimate
period Perron (PP) aof

rfCO, 1850-2007 0 No 2.147 1.249 10.589 3.60 1.61

0 Yes 0.716 —1.438 441 0.809

1 No —0.459 0.676 —3.253 2.66

2 No —-5.583 —-8.548 —20.856 0.0349
rfCHy4 1850-2007 O No —-1.990 0.689 3.341 3.84 1.14

0 Yes —-3.523 -3.064 -1.962 0.963

1 No -1.324 -0.971 —-2.005 1.91

2 No —-4932 -1.701 —15.517 0.107
rfN,O 1850-2007 O No 1.210 0.285 14.461 3.56 1.45

0 Yes —-0.298 —-2.338 5.013 0.897

1 No 0.394 -1.334 -6.398 3.17

2 No —6.745 —-9.230 —40.369 0.0508
Temperature 1880-2007 0O No 0.135 0.371 -—-1.821 2.46 0.94
(NASA-GISS) 0 Yes —-2.138 —-1.481 -5.514 0.321

1 No —8.228 —11.285 —-17.921 0.139
Temperature 1850-2007 0 No 0.227 0.540 -2.999 3.01 1.05
(BEST) 0 Yes —-2.393 —-4.238 —-7.077 0.397

1 No -8.377 -0.713 —23.996 0.0624
Solar 1880-2003 0 No —1.258 1.094 —2.034 2.68 0.80
irradiance 0 Yes —4129 -1.016 —4.162 0.185
(NASA-GISS) 1 No —-9.489 -0.895 —6.613 0.0153
Reflective 1880-2003 0 No -0.796 -0.714 1.941 3.03 1.23
tropospheric 0 Yes —-2450 -2.121 —1.458 0.757
aerosols 1 No -1.691 —1.486 -1.718 0.991

2 No —-4.724 —-7.290 —-10.932 0.168
Black 1880-2003 O No 0.056 0.462 1.323 2.94 1.66
carbon 0 Yes —-1.945 —-2.030 —0.892 0.692

1 No —-2.795 —-2.440 —-2.731 0.527

2 No -4.696 —-7.272 —11.053 0.059
Stratospheric 1880-2003 0 No —4.743 —-4.183 —-5.330 0.212 0.10
aerosols
Stratospheric 1880-2003 0O No -—-2.862 —-2.703 3.272 3.04 1.16
H,O 0 Yes —-3.896 —4.908 —-1.843 0.762

1 No —-3.021 -8.446 -1.954 1.61

2 No —-4.129 -8.872 —16.445 0.287
Ocean heat 1952-1996 0 No -1.200 -1.307 -0.824 1.3
content 0 Yes —4.232 -2.746 —-2.462 0.107

1 No -5.621 —2.471 —-4.834 0.13

Notes: in the ADF, PP and DF-GLS statistics test the null hypothesis is théttthdifference of the variable in the first columniigl).
In the KPSS statistic tests the null hypothesis is that/tlie difference isZ (0). The final column reports the fractional estimate of d using
the method of Geweke and Porter-Hudak (1983).

are needed, however, in the cases of FQO@N-O and strato-  Newey-West criteria for calculating robust standard errors. In
spheric BO 8 augmentations are needed. In any case, theractice we find that these statistics use about 4 autocorrela-
classification is robust with respect to augmentations in thetions, which is similar to our LM procedure for determining
range of 2—10. Therefore, we do not think that the num-the number of augmentations for ADF.

ber of augmentations affects our classifications. The KPSS For each variable we begin in step 1 by testing whether
and Phillips—Perron statistics use the standard nonparametritis stationary ¢ =0, no deterministic trend). This is easily
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rejected for all the variables in the table below except forcointegrate into aii(1) variable. If this/ (1) variable is coin-
stratospheric aerosols. Next, in step 2 we test whether théegrated with other (1) variables, the relationship between
variables are trend stationamwy € 0 with a deterministic time  the 7(2) and (1) variables is not spurious. In this case the
trend). According to the KPSS statistic none of the variablesvariables are polynomially cointegrafed

is trend stationary. However, in some cases (temperature, so- We therefore test the hypothesis that the anthropogenic
lar irradiance) the Phillips—Perron statistic suggests trend staZ (2) forcings are cointegrated, and if so, whether they coin-
tionary as does the ADF statistic for ocean heat. tegrate into an’ (1) variable, which we refer to as the “an-

In step 3 we test for difference stationagy={1, no de- thropogenic anomaly”. We carry out this test with and with-
terministic trend). The concurrence criterion is achieved forout tropospheric aerosols and black carbon (Egs. 9 and 10
both measures of temperature (GISS and BEST), solar irrarespectively). The least squares estimate of the cointegrat-
diance and ocean heat content. Therefore, we classify thesag vector for the three greenhouses gases (5{CfQH,4 and
variables as/ (1). Notice that none of these variables is rfN20) using data from 1850-2007 is
anthropogenic.

In step 4 we test whether these anthropogenic variable§fCO2 = 10.972+ 0.046rfCH; + 10.134rfN;O + g1 (9)
arel (2). The test statistics unanimously concur that2 for S
rfCO5, rfN,0, reflective tropospheric aerosols, black carbonwhere g1 denotes the residual and”™ of this regression
and stratospheric #D. The same applies to rfGHexcept for  is 0.994. When tropospheric aerosols and black carbon are
the DF-GLS statistic. Notice that this classification is implied included, the OLS estimate using data from 1880 to 2003 is
by DF — type tests as well as KPSS. For example, the ADF
test statistics reject the hypothesis tat1 but do not reject 102 = 12554+ 0.345rfCH; + 9.137riN;O
the hypothesis that = 2. +1.029BC+ 0.441Reflaer g (10)

In summary, the time series properties of anthropogenic L .
forcings are fundamentally different to the time series prop-Where _BC denotes_radlatlve _for_cmg Of. black carbon con-
erties of temperature and solar irradiance. Whereas the Iatt&entrat'on’ Reflaer is the radiative for(ir;g of all reflective
are (1) variables and are stationary in first differences, the@erosols ang> denotes the residual. The" of this regres-
former arel (2) variables and are stationary in second differ- Sion is 0.996.
ences. Moreover, this classification is robust and unanimous; We use a variety of cointegration test statistics to esti-
all of the anthropogenic forcings afé2). A joint test of the ~ Mate the order of integration of the estimategpndgz in
probability that all anthropogenic forcings ar€2) variables  Eas. (9) and (10). Since the ADF and PP statisticgfaand
WOUId Sure'y ShOW even more powerfu”y that anthropogenicgz exceed their critical values (|e they are less negative than
forcings arel (2). This unanimity stems from the fact that / as defined in Table 2§, andg> are clearly nonstationary.
these forcings are driven by a common anthropogenic factoMatterS are quite diﬁerent in the case Of the fiI’St diﬁerences
as we demonstrate below. of these estimates. Faxg; the ADF and PP statistics are

We also check whether rfGQs (1) subject to a struc- smaller than their critical value, in which cage is 7(1).
tural break. A break in the stochastic trend of riC@ight ~ According to the PP statistic so & (1), while the ADF
create the impression thdt= 2 when in factd = 1. We apply statistic falls slightly short of its critical value at=0.05.
the test Suggested by Perron and Voge|sang (1992) for the Whereas Critical ValueS are a.Va.iIable for ADF and PP
null in which fCO, is (1) with a structural break at some tests for polynomial cointegration, there are no KPSS tests
unknown date. The VP statistic (which is the minimal ADF for polynomial cointegration. Such critical values, how-
statistic allowing for a break) for the first difference of fg0  €ver, must be smaller than the critical values calculated
is —3.877. Despite the fact that Fig. 2 suggests that this brealRy Shin (1994) for/ (1) variables, just as Haldrup’s criti-
occurred mid-century, the estimated break point is 1964, bu€al values are more negative than MacKinnon's (1991) for
since the critical value of the VP statisticis4.27, we can /(1) variables. Therefore, we may use Shin’s critical val-
safely reject the hypothesis that fG® (1) with a break ~ Ues to bound polynomial cointegration tests using the KPSS

in its stochastic trend. methodology. For example, the KPSS statisticdpis 0.75.
Since this clearly exceeds Shin’s critical value (0.21)is

less than 0.21, it might b&(0). A similar pattern is found

\Il\lv?][é?]a::lgyslta(%))bzg(rj\/le(s)rgiartlsﬂgﬁi;2nbnec;\t/vk)eirf()tw:r?r?§fié)rzjr'- 8Enders (2010) refers to this phenomenon by “multicointegra-
. C . fon. Granger and Lee (1989, 1990) originally defined multicoin-
ous. Smlce the radiative forcings of greenhouse gases, tro('egration if the difference between the integrald @f) variables is
pospheric aerosols and black carbon &(&) they cannot ;1) subsequently, Engsted et al. (1997) interpreted multicointe-
be cointegrated with global temperature and solar irradi-gration in an (2) context since integrals df(1) variables ard (2)
ance, which ard (1). An exception arises if thé(2) vari- by definition. Although formally correct, polynomial and multiple
ables happen to be cointegrated between themselves and thegintegration are conceptually different.
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Table 2. Cointegration tests for anthropogenic anomalies. Table 3. Polynomial cointegration tests.
81 Ag1 g2 Ago Model 1 2
ADF —229 425 -295 383 Intercept 13.80 13.79
PP —-153 -12.78 -2.37 -10.57 Solar irradiance 1.763 1.806
H —-3.85 —-4.1 Anthropogenic anomaly —0.0120 1.822
KPSS 0.72 0.13 0.16 0.08 ADF —2.476 —2.709
Shin 0.21 0.11 PP —4.78 —4.96
Notes:H is the critical value of the polynomial cointegration H —4.56 —4.80
test statistic ¢ =0.05) according to Haldrup (1994). “Shin” is KPSS 0.561 0.55
the critical value p = 0.05) of the cointegration test from Shin 0.121 0.080
Shin (1994). 2 . X X
R“ adjusted 0.447 0.468
Data period 1880-2007
for §2 andAéZ- Had the KPSS statistics fm‘gl andAgZ ex- Notes: temperature is regressed on solar irradiance and the

ceeded 0.21 we would have been able to reject the hypotheses anthropogenic anomaly. Model 1 is estimated using the
. . . anthropogenic anomaly{) from Eq. (9). Model 2 is estimated
that these anthropogenic forcings are cointegrated. usingg, from Eq. (10). The first three rows report regression
|n Summary both types Of Co|ntegrat|0n tests |n Table 2 coefficients. The ADF, PP and KPSS statistics refer to the
’ . . . i iduals. See Table 2 fi d Shin.
suggest that anthropogenic forcings, all of which ac2) regression residuals. See Table 2 for nofediamd Shin
variables “cointegrate down” to ah(1) variable which we
refer to as the “anthropogenic anomaly)(The existence 3.4 Reconstructing invalid cointegration tests
of this anomaly means that there is an “anthropogenic trend”,
which is the predicted value of rfGOrom Eq. (9) inthe case  As noted, a number of studies (Kaufmann and Stern, 2002;
of g1 and the predicted values of rfG@&om Eg. (10) inthe  Kaufmann et al., 2006b, 2010; Mills, 2009) recognise that

case ofg>. greenhouse gas forcings af€2) variables, but their coin-
_ _ . tegration tests treat thB(2) variables as if they weré(1)
3.3 Polynomial cointegration test variables. To explore the implications of this oversight we

use the model specification used in these stulliestimated
We now test whether anthropogenic forcings are polynomi “with data for 1880—2000:

ally cointegrated with solar irradiance. In Table 3 results are

reported using the anthropogenic anomalies estimated in the — 1805+ 1.06rfCO; + 0.665 — 1.89rfCH; + 0.71rfN,0 (11)

previous subsection. Model 1 is based on Eqg. (9) and uses

g1 which is estimated from the three greenhouse gases, angtherer” is 0.6829. According to Eq. (11) temperature varies

model 2 is also based on aerosols and black carbon. Becausfrectly with solar irradiance and G@orcing, implying that

of data constraints for temperature, aerosols and black carbog doubling of atmospheric rfGQOraises global temperature

the estimation period begins in 1880. by almost 4 degrees. The cointegration test statistics are
In model 1 there is a positive effect of solar irradiance on ADF,=—4.76, PP =7.73, KPSS=0.11. Since the critical

temperature, but the effect of the anthropogenic anomaly is/alues of ADF and PP are4.18 (MacKinnon, 1991) and

negative. According to AGW this effect should have beenthe critical value for KPSS is 0.121 (Shin, 1994), it would

positive. In the case of model 1 the critical value of the poly- appear that Eq. (11) is cointegrated. But this result ignores

nomial cointegration test i = —4.56. The (4th order) ADF  the fact that greenhouse gas forcings A®.

statistic is—2.476 and the PP statistic 454.78. According The correct cointegration test involves specifying/df)

to the ADF statistic the null hypothesis of polynomial coin- variable as a regressand (Haldrup, 1994). Using sf@®

tegration is easily rejected, but according to the PP statistic isuch purposes we estimate

is not rejected. The KPSS statistic massively rejects the hy-

pothesis that the residuals from model &4(@) since its value  rfCO, = 11.92 + 0.03T — 0.125 + 0.15rfCHs + 9.36rfN2O (12)

greatly exceeds its critical value férc1) variables. Given the

methodological preference for ADF over PP (Sect. 2) and thewhere R°=0.996. According to Eq. (12) temperature is

KPSS statistic, model 1 is not polynomially cointegrated andmore sensitive to forcings than in Eqg. (11), however, de-

AGW is rejected. spite the high goodness-of-fit, the regression relation is spu-
Similar results are obtained for model 2 except the coef-rious. The critical value of ADF for polynomial cointegration

ficient on the anthropogenic anomaly is positive instead ofis —4.56 (Haldrup, 1994) when their test values a/2.22.

negative. According to the ADF and KPSS statistics model 2The KPSS statistic is 0.277. Although there is no KPSS-type

is clearly not polynomially cointegrated, but the PP statistic

fails to reject atp =0.05.

9Since tropospheric aerosols and black carbon did not feature
in their model, we do not include these variables. However, this
omission does not affect the results.
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test statistic for polynomial cointegration, its critical value Table 4. Water vapor and ocean heat: cointegration tests with
must be smaller than 0.121, which is its critical value for temperature.

I (1) variables from Shin (1994). The ADF and KPSS statis-
tics strongly suggest that Eq. (12) is not polynomially cointe-
grated. Therefore, treating th&2) variables, which are ex-
clusively anthropogenic, as if they wef€l) variables, pre-
disposes the results into falsely accepting the anthropogenic
interpretation of global warming.

In summary, ignoring the fact that greenhouse gas forc-
ings arel (2) and treating them as if they wef¢l) variables
creates the false impression that global temperature is coin-
tegrated with solar irradiance and greenhouse gas forcings.
This spurious relation suggests (spuriously) that a doubling
of carbon forcing will raise temperature by about 4 degrees.
Once thel (2) status of anthropogenic forcings is taken into
consideration, there is no significant effect of anthropogenic
forcing on global temperature.

Model Water Ocean
vapor heat
Intercept 13.747 14.11
Temperature 1.763 0.018
ADF —2.805 —2.370
DF-GLS; —3.587 —2.84
PP —1.530 —3.57
MacKinnon —3.426 —3.47
KPSS 0.166 0.44
Shin 0.314 0.314
R? adjusted 0.658 0.260
Data periods 1880-2007 1952-1996

Notes: temperature is regressed (OLS) on water vapor and
on ocean heat content. The first two rows report the

regression coefficients. “MacKinnon” is the critical value
of the cointegration test from MacKinnon (1991) and
“Shin” is the critical value of the cointegration test

3.5 Water vapor and ocean heat content statistic in Shin (1994).

It has been suggested by Stern (2006) that cointegration tests
should take into account the transfer of heat that occurs beresult that the anthropogenic?2) variables are not polyno-
tween the atmosphere and the oceans. The heating of earthially cointegrated with temperature and solar irradiance.
by the sun is absorbed mostly by the oceans, and part of this
energy is transformed into evaporated water (i.e. latent heat.6 Nonlinear cointegration
that heats the atmosphere and cools the ocean. The top ten
metres of the water column stores as much heat as the entirfEhus far our results reject a linear representation of AGW.
atmosphere. There are two issues that are relevant to the stgUPpose instead that AGW is nonlinear. Naturally, a test of
tistical tests performed here. First, as discussed in Sect. 2, bdbis hypothesis requires an explicit nonlinear specification of
cause water vapor and ocean heat content are entirely depeASW. Two types of nonlinearity might be involved. First, al-
dent on temperature, they cannot affect cointegration testéough anthropogenic forcings af€2), there might be some
asymptotically. Therefore, omitting these variables does nofionlinear transformation of them that/igl). An example of
affect the tests that we have reported because their effect i8Uch a nonlinear transformation of a linda) series is eco-
intermediated by other variables in the model. nomic activity, which is typically/ (2) but its logarithm is

Secondly, because water vapor is dependent(@nvari- 1(1) (Banerjee et al., 1993, 30—-32 pp.). Nonlinear cointegra-
ables, it is an/ (1) variable (see Table 2) as expected. Ta- tion testing would include nonlinear transformations of the
ble 4 reports a cointegration test between water vapor and (2) variables in the cointegrating vector. If these nonlinear
temperature. The critical valug € 0.05) for the ADF, PP transformations turn out to be cointegrated with temperature
and DF-GLS statistics is-3.426, which is satisfied by the and solar irradiance, nonlinear AGW would be corroborated.
DF-GLS statistic for the regression residuals, but not by theWe have experimented with numerous nonlinear transforma-
ADF and PP statistics. On the other hand, the KPSS statistions' of GHG forcings (n-th roots, reciprocals, logarithms
tic (0.166) is clearly less than its critical value (0.314), sug- €tc), but none of them was found to bel).
gesting that the regression residuals &i@). Therefore, the A second type of nonlinearity might be induced by inter-
KPSS statistic Suggests that water Vapor and temperature a%:tions betWeen Val‘iables. HOWeVer, these interactions WOUId
cointegrated, whereas the DF-type tests are ambiguous. WAAVe to bef (1) since temperature i5(1). It would therefore
ter vapor is (1) because global temperaturefi€l), not the be necessary to interact anthropogenic forcings with some
other way around. other variable such that their product/i€l). Normally, the

The results reported in Table 4 indicate that ocean heat an@roduct of an/ (1) variable and ar (2) variable is not/ (1).
temperature are not cointegrated. Only one of the cointegra=—,

. ) . Choi and Saikkonen (2010) limit their tests to cases in which
tion tests (PP) does not reject the null hypothesis. Howeverthe covariates arg(1) and their nonlinear transformations dre).

this result is obtalr.1ed from only 45yr of d"?‘ta’ Wh'Ch MY The nonlinear transformations must bel), but there is no reason
be too short for estimating the long-run relationship betweenyy the covariates should bi&l). If x ~ I (0) nonlinear cointegra-
ocean heat and surface temperature. Since water vapor am@n requires thayf (x) ~ 7(1). If x ~ 1(2), it requiresf (x) ~ I (1).
ocean heat are ndt(2) variables their omission from mod- See Granger and Hallman (1991) on nonlinear transformations of
els 1 and 2 in Table 3 and Eq. (12) cannot affect our main/ (1) variables.
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We have been unable to find a nonlinear specification ofrestricted dynamic specification (see e.g. Hendry, 1995 for
AGW even after extensive data-mining. Based on many ex-details of this methodology) which in the present case yields:
perlments, we.conclude thgt anthropogenic forcings are n.OIATt — 0.005— 0.14AT,_p— 0.20AT,_5+ O.71A§S,
nonlinearly cointegrated with temperature and solar irradi-

ance. Nor, of course, are they linearly cointegrated. ©.05 (17D 25D 209
+4.72A3rfCOp; + 29.74A2rfN2O;_2 — 0.50u,_1 (14)
3.7 A model of short-run AGW (4.08 (2.41) (6.38)

R?adj= 0.379se= 0.12DW = 1.98LM = 4.36.

Since the variables in Eq. (14) are stationary and their coef-
gration tests, we investigate a modified version of AGW in ficient estimates have standard distributions, we report ab-

which the first differences of anthropogenic forcings are hy_solute t—statistics in parentheses. Since the critical value

. . . . for the r-statistic (p=0.05) is 1.98, all the parameter esti-
pothesized to be cointegrated with temperature and solar ir- ) . o .
radiance. Although there is no physical theory for this modi- ”.‘ates n Eq.. (14) are s_,tat|st|cally significant with the POS-
fied theory of AGW, we report it out of curiosity and simply sg;jﬁigggg gifrg;ﬁ f|vrvsltth ItrrlleEgr.d((lj‘ilf)fetrZig: ?r? ?fz:g]éem-
because it turns out to be cointegrated. Indeed, it is the onl y

. . - S he twice lagged 2nd difference in r§. It also varies di-
model for which we can find a statistically significant role for ) 3 ~ . .

. rectly with the 2nd (“seasonal”) difference of solar irradi-
anthropogenics.

2¢ ZAS _
In this test all the variables ar&(1) in which case stan- ance (35, =AS; —AS, o). It does not depend at all on

dard cointegration tests apply. In this modified AGW the null methane. Therg is evidence qf 2nd and 3rd or'der negative
Y , . autoregression in the change in temperature. Finally, the er-
hypothesis is that anthropogenic forcings have a temporar

¥or correction coefficient is very significant and is equal to
rather than a permanent effect on global temperature. Usm% half. This means that when the temperature deviates from
data for 1880 to 2007, we find that the statistically signif- '

icant variables include solar irradiance and the first differ- its steady state equilibrium as determined in Eq. (14) about

ences (denoted by) in the forcings of three greenhouse half of the deviation is corrected within a year. These es-
9 9 timated speeds of adjustment are similar to those obtained

The first differences of (2) variables are necessarify(1)
variables. Although AGW is rejected by polynomial cointe-

gases: from time series models (Liu and Rodriguez, 2005; Kauf-
T = 13821+ 1.508S + 10.765ArfCO, mann et al., 2006a). The Durbin Watson (DW) and Lagrange
— 46.256AMCHg + 36.199ArfN,0 (13) Multiplier (LM) statistics for serial correlation in the residu-

als indicate that the dynamic specification of Eq. (14) is ap-
whereR” is 0.6539. According to Eq. (13) temperature varies propriate. The-statistic on the error correction term is large
with solar irradiance and it varies directly with changes and negative{6.38). This constitutes further evidence that
in rfCO, and rf\,O and inversely with the change in Eqg. (14) is cointegrated. Finally, the standard error of esti-
rfCH4. This difference between methane and other greenmate (se) means that the standard deviation of the predicted
house gases has been noted by Liu and Rodriguez (2003)@lue of temperature is 0.2 which is large relative to the
and others. The ADF and PP statistics for the residuals ofhange in temperature that occurred during 1880-2007.
Eq. (13) are—5.17 and—7.10, respectively. Since accord-
ing to MacKinnon (1991) the critical value for cointegra-
tion is —4.85 (p =0.05) the variables in Eq. (13) are coin-
tegrated. Note that since the variables in Eq. (13Yate¢ we
do not use critical values for polynomial cointegration. The
KPSS statistic for the residuals of Eqg. (13) is 0.303, which
exceeds its critical value (0.121) in Shin (1994). Therefore
even Eq. (13) is not unambiguously cointegrated.

3.9 Robustness checks

We carry out a variety of robustness checks regarding the re-
jection of AGW by polynomial cointegration tests reported
in Table 3, and the non-rejection of modified AGW (Eg. 13).
These checks are additional to those that we have already re-
'ported, such as nonlinear cointegration tests. The robustness
checks fall into three distinct groups. First, we check for the
presence of finite sample bias. Second, we check whether our
results are robust with respect to different estimation meth-
Cointegration implies error correction, which is the dynamic 0ds. Finally, we check whether they are robust with respect
process through which temperature converges to its longto different data measurements.

term equilibrium level (Engle and Granger, 1987). We re- We use the 3-stage procedtfeuggested by Engle and
port the error correction model (ECM) for g|oba| temper- Yoo (1991) to test for finite Sample bias in the estimates of
ature since this is the main variable of interes_t here. This 11116 residuals of Eq. (13) are regressed on the covariates in
model uses the residuals)(from Eq. (13), which mea-  gq (13) multiplied by the error correction coefficient from Eq. (14),
sure the deviation of temperature from its long-term equi-which is —0.5. If these residuals ai&0) R? should be zero since
librium level. Its dynamic specification is estimated using the covariates aré(1). The adjusteck? is 0.0033 and the largest
the general-to-specific methodology, which nests-down to a-statistic is 1.4.

3.8 Error correction
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equation (13). Since thp-value of the F-statistic for the  temperature is cointegrated with solar irradiance and green-
3rd stage (for which Eq. 13 is the 1st stage and Eq. 14 ishouse gas forcings.
the 2nd stage) is 0.36, we may reject the hypothesis of finite When we use these revised data models 1 and 2 in Table 3
sample bias in Eq. (13). We can only apply this test to cointe-are still polynomially uncointegrated. However, Eq. (13)
grated results. We therefore cannot apply it to models 1 and 2eases to be cointegrated. This happens because, as noted,
in Table 3 since they are not polynomially cointegrated. Nev-the revised data are quite different to the original. Therefore
ertheless, the fact that finite sample bias cannot be detected these revised data reject both AGW and its modified version.
Eq. (13) suggests that finite sample bias does not explain whyrinally, we re-estimated all the models using temperature as
AGW is not polynomially cointegrated. If there is no finite measured by the Berkeley Earth Surface Temperature Study
sample bias in Eqg. (13) where the parameter estimates afBEST) instead of NASA-GISS. Data for BEST are available
T3/2-consistent, there is all the more reason to believe thafrom 1850 rather than 1880, which adds 30 yr more data for
finite sample bias is not present in our polynomial cointegra-our cointegration tests. However, BEST unlike NASA-GISS
tion tests where the estimates dr¥2-consistent. Therefore, refers to land temperature only. BEST, like temperature in
our failure to corroborate AGW according to which tempera- NASA-GISS, is difference stationary. Estimates of models 1
ture and solar irradiance are polynomially cointegrated withand 2 and Eq. (13) using BEST are almost identical to their
anthropogenic forcings is not attributable to lack of data andNASA-GISS counterparts. AGW continues to be polynomi-
associated finite sample bias. ally uncointegrated, while modified AGW continues to be
Next, we use DOLS (Stock and Watson, 1993) rather tharcointegrated.
OLS to estimate models 1 and 2 in Table 3 and Eq. (13). Our results are therefore robust with respect to a variety
Since DOLS requires the specification of leads and lags irof misspecification tests and alternative estimators and data.
the first differences of the covariates, we use two leads andemperature is not polynomially cointegrated with solar irra-
lags. The DOLS estimates of the coefficients are 2.1 (soladiance and anthropogenic forcing, but it appears to be coin-
irradiance) and 0.75¢] for model 1 and 2.04 and 2.09 for tegrated with solar irradiance and changes in anthropogenic
model 2. These estimates are larger than their OLS counforcings.
terparts in Table 2. The ADF polynomial cointegration test
statistics are-2.96 and—3.11, respectively, which although
smaller than their counterparts in Table 3 still exceed their4 Discussion
critical values of—4.56 and—4.8. Therefore, the DOLS es-
timates confirm the previous conclusion that AGW is a spu-We have shown that anthropogenic forcings do not polyno-
rious regression phenomenon. mially cointegrate with global temperature and solar irradi-
The ADF statistic for the DOLS estimate of Eq. (13) ance. Therefore, data for 1880-2007 do not support the an-
is —4.83 which is almost identical to its critical value4.85  thropogenic interpretation of global warming during this pe-
at p =0.05). Since the p-value of the DOLS cointegration testriod. This key result is shown graphically in Fig. 3 where
exceeds its OLS counterpart we are less sure that Eq. (13) ithe vertical axis measures the component of global temper-
cointegrated. However, since thestatistic of the error cor-  ature that is unexplained by solar irradiance according to
rection coefficient in Eq. (14)+6.48) is much smaller than our estimates. In panel a the horizontal axis measures the
its critical value (Ericsson and MacKinnon, 2002) the ECM anomaly in the anthropogenic trend when the latter is derived
cointegration test serves as an independent robustness chedkom forcings of carbon dioxide, methane and nitrous oxide.
Since the OLS and EC cointegration tests corroborate modin panel b the horizontal axis measures this anthropogenic
ified AGW and the DOLS test is borderline we are inclined anomaly when apart from these greenhouse gas forcings, it
to conclude that there is a temporary effect of anthropogenidncludes tropospheric aerosols and black carbon. Panels a
forcings on temperature. and b both show that there is no relationship between tem-
We have estimated Eq. (13) using revised and extended (tperature and the anthropogenic anomaly, once the warming
2006) data for solar irradiance (Lean and Rind, 2009). Prioreffect of solar irradiance is taken into consideration.
to 1980 these data were based on various proxy measures. However, we find that greenhouse gas forcings might have
Data since 1980 are based on instrumental measuremengstemporary effect on global temperature. This result is il-
taken from satellites. Whereas the data in NASA GISS usedustrated in panel ¢ of Fig. 3 in which the horizontal axis
15yr of satellite data, the revised data use 26 yr of satellitemeasures the change in the estimated anthropogenic trend.
data. We note that the revised data behave quite differentlyanel c clearly shows that there is a positive relationship
from the original in that the ratio between the revised databetween temperature and the change in the anthropogenic
and the original decreases during 1850 to 1950 but increaseenomaly once the warming effect of solar irradiance is taken
subsequently. Also the fractional estimate of d for the revisednto consideration.
datais only 0.16 instead of 0.8 in Table 1, suggesting that so- Currently, most of the evidence supporting AGW the-
lar irradiance is stationary. We have focused on the originalory is obtained by calibration methods and the simulation
data since these were used by others who claimed that globalf GCMs. Calibration shows, e.g. Crowley (2000), that to
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a. they check whether the effect is spuridfisThe implication
14.4 . of our results is that the permanent effect is not statistically
. 4 significant. Nevertheless, there seems to be a temporary an-
14.2 - . ¥ thropogenic effect. If the effect is temporary rather than per-
14 N 3 - 6‘ ‘s . -t manent, a doubling, say, of carbon emissions would have
L * e ee .t.,:’ w o 8° ' ¢ no long-run effect on Earth’s temperature, but it would in-
13.8 —;—..’—f‘—“—f“—v—{“—;—q— crease it temporarily for some decades. Indeed, the increase
136 et e +,4 o? in temperature during 1975-1995 and its subsequent stabil-
s * L % ity are in our view related in this way to the acceleration in
13.4 & - T T carbon emissions during the second half of the 20th century
0.04 .02 Y 0.02 0.04 0.06 (Fig. 2). The policy implications of this result are major since
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an effect which is temporary is less serious than one that is
permanent.

The fact that since the mid 19th century Earth’s tempera-
ture is unrelated to anthropogenic forcings does not contra-
vene the laws of thermodynamics, greenhouse theory, or any
other physical theory. Given the complexity of Earth’s cli-
mate, and our incomplete understanding of it, it is difficult to
attribute to carbon emissions and other anthropogenic phe-
nomena the main cause for global warming in the 20th cen-
tury. This is not an argument about physics, but an argument

005 003 001 0.01 0.03 0.05 about data interpretation. Do climate developments during
the relatively recent past justify the interpretation that global
c. warming was induced by anthropogenics during this pe-
14.5 Y riod? Had Earth’s temperature not increased in the 20th cen-
14.3 = tury despite the increase in anthropogenic forcings (as was
14.1 LA .: — the case during the second half of the 19th century), this
RPRI PP > would not have constituted evidence against greenhouse the-
13.8 1 o s 3 ory. However, our results challenge the data interpretation
13.7 4 i > 0%y that since 1880 global warming was caused by anthropogenic
135 LI e phenomena.
133 M ' ' . Nor does the fact that during this period anthropogenic
019 0.01 0.21 0.41 forcings are 1(2), i.e. stationary in second differences,

anthropogenic trend anomaly

whereas Earth’'s temperature and solar irradiancel étg
i.e. stationary in first differences, contravene any physical
theory. For physical reasons it might be expected that over

Fig. 3. Statistical association between (scatter plot of) anthro-the millennia these variables should share the same order of
pogenic anomaly (abscissa), and net temperature effect (i.e. teMntegration; they should all bé(1) or all 7(2), otherwise

perature minus the estimated solar irradiance effect; ordinates). Paghare would be persistent energy imbalance. However, dur-
els (a)Hc) display the results of the models presented in models 1. ; . o

ng the last 150 yr there is no physical reason why these vari-
and 2 in Table 3 and Eq. (13), respectively. The anthropogenic trent’!i 9 y phy y

g L ) ables should share the same order of integration. However,
anomaly sums the weighted radiative forcings of the greenhous?h fact that thev d t sh th d fint fi
gases (CQ, CHy and NbO). The calculation of the net temperature € ac_ a ; €y do not share : e _Same order or integra |_0n
effect (as defined above) change is calculated by subtracting fronPVer this period means that scientists who make strong in-
the observed temperature in a specific year the product of the sderpretations about the anthropogenic causes of recent global
lar irradiance in that year times the coefficient obtained from thewarming should be cautious. Our polynomial cointegration
regression of the particular model equation: 1.763 in the case otests challenge their interpretation of the data.
model 1(a); 1.806 in the case of model(B); and 1.508 in the case Finally, all statistical tests are probabilistic and depend
of Eg. (13)(c). on the specification of the model. Type 1 error refers to the

probability of rejecting a hypothesis when it is true (false

. : . ) 12GCcMs embody hundreds if not thousands of unknown param-
explain the increase in temperature in the 20th century, andyers to be calibrated. In practice this leaves few if any degrees

especially since 1970, it is necessary to specify a sufficientlyof freedom to carry out meaningful statistical tests. This explains
strong anthropogenic effect. However, calibrators do not re.why observationally similar GCMs often generate quite different
port tests for the statistical significance of this effect, nor doforecasts.

www.earth-syst-dynam.net/3/173/2012/ Earth Syst. Dynam., 3, 17838 2012



186 M. Beenstock et al.: Polynomial cointegration tests of anthropogenic impact on global warming

Data Appendix.
Variable name Unit Data source Link
Temperature °Canomaly NASA-GISS surface http://data.giss.nasa.gov/gistemp/

temperature analysis

Temperature (Mann, °C anomaly Mann et al. (2008)
2008 reconstruction)

Temperature °Canomaly Berkeley earth http://berkeleyearth.org/analysis.php
(Berkeley earth surface temperature

surface study

temperature)

Solar irradiance W m?2 Lean et al. (1995)

Solar irradiance — W m? Lean and Rind

updated (2009)

CO, concentrations  ppm NASA-GISS http://data.giss.nasa.gov

N>O concentrations  ppm NASA-GISS http://data.giss.nasa.gov

CH4 concentrations  ppm NASA-GISS http://data.giss.nasa.gov

Ocean heat content ~ 3®joules  Levitus et al. (2005)

Black carbon W T2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
(forcing)

Reflective wn# NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
tropospheric

aerosols (forcing)

Stratospheric W m?2 NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
aerosols (forcing)

Water vapour W rh NASA-GISS http://data.giss.nasa.gov/modelforce/RadF.txt
(forcing)

Notes: concentrations of GON,O and CH are converted into radiative forcings using the formula provided by Myhre et al. (1998).

positive) and type 2 error refers to the probability of not Crowley, T. J.: Causes of climate change over the past 1000 years,
rejecting a hypothesis when it is false (false negative). In our Science, 289, 270-277, 2000.

case the type 1 error is very small because anthropogeni@avidson, R. and MacKinnon, J. G.: Econometric Theory and
forcing is 7 (1) with very low probability, and temperature is __Methods, Oxford University Press, 2009. o
polynomially cointegrated with very low probability. Also Dickey, D. A. .and.FuIIer, .W. A'.: leellhood ratio statlst|c§ for
we have experimented with a variety of model specifications i‘gtso;e%f'zs“g 8t|1me-ser|es with a unit root, Econometrica, 49,
and estimation methodologies. This means, however, that - : :

ith all h h L f ! bsol _aélliott, G., Rothenberg, T. J., and Stock, J. H.: Efficient tests for an
with all hypotheses, our rejection of AGW is not absolute; autoregressive unit root, Econometrica, 64, 813-836, 1996.

it might be a false positive, and we cannot rule out the gngers, W.: ARIMA and cointegration tests of PPP under fixed and
possibility that recent global warming has an anthropogenic  fexible exchange rate regimes, Rev. Econom. Stat., 70, 504-508,
footprint. However, this possibility is very small, and is not  1988.

statistically significant at conventional levels. Enders, W.: Applied Econometric Time Series, 3rd Edn., John Wi-
ley, 2010.
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